HEMT高灵敏度微加速度计的设计与测试
根据压阻传感原理设计了GaN/AlGaN高电子迁移率晶体管(high electron mobility transistor,HEMT)器件与Si基悬臂梁-质量块结构集成的微加速度。通过ANSYS结构应力仿真,GaN基HEMT作为敏感单元置于微悬臂梁结构根部的应力最大处。同时对微加速度计的关键研制工艺进行了设计和研究,成功制备出具有力电耦合特性的传感结构。并且测试了微结构在静态0~10g的惯性测试,结果表明GaN基HEMT器件具备明显的力电耦合效应,该微加速度计的灵敏度为0.24 mA/g,线性度为12.4%,适合研制高灵敏度的微加速度计。
基于仿生水听器的回声测距方法
受鱼类侧线结构的启发,设计了一种双T型结构的MEMS芯片。对该结构的核心元件T型梁进行最大应力与谐振频率分析,确定梁参数和压敏电阻的位置及其大小、尺寸。通过信号提取电路,对接收到的微弱电压变化信号值放大滤波后进行回波测距实验。测试结果得出:所设计的水听器可对水下障碍物进行距离探测,并实时LCD显示。
一种新型的MEMS单矢量水听器研究
依据压阻效应原理,利用微电子机械系统(MEMS)制作技术设计并制作出一种新型的水声接收换能器-MEMS单矢量水听器,期望利用敏感材料的压阻效应以及水听器精巧的微结构,实现矢量水听器的低频特性和小型化。通过有限元软件ANSYS对水听器微结构进行了静态仿真,利用MEMS微机械加工工艺制作出水听器微结构并对水听器进行了封装,采用振动台标定和水下驻波场测试相结合的方法完成了水听器的测试。测试结果表明:结合压阻效应原理和MEMS技术制作矢量水听器具有可行性。该水听器不但体积小、质量轻、结构简单,而且具有“8”字型的指向特性,单个水听器就能对水下水平面内的声源目标进行定向探测。
一种新型的压阻式硅微二维加速度计的设计
以压阻检测技术为基础并结合硅微MEMS加工技术设计了一种二维加速度计微结构,期望利用该新型的结构提高加速度计的灵敏度,实现二维方向的加速度检测。该加速度计采用四个相互垂直的悬臂梁支撑中间有刚硬柱体的结构,通过利用合理布置的压敏电阻构成的惠斯通电桥测量水平面内两个方向的加速度。建立了该结构的数学模型并用有限元分析软件ANSYS对敏感弹性元件进行分析。最后对加工出的加速度计进行了相关的测试。测试结果表明:该加速度计水平面内两个方向的灵敏度高、线形度较好,X向灵敏度为0.7552mv/g,线性度为0.99967,Y向灵敏度为0.6833mv/g,线性度为0.99966。
硅微矢量水声传感器的封装及测试方法研究
针对目前矢量水声传感器存在的高灵敏度、低频检测以及小型化等问题,提出了一种新型的硅微MEMS矢量水声传感器。利用敏感材料的压阻效应、传感器精巧的微结构以及硅微MEMS技术,实现矢量水声传感器的低频特性和小型化的可行性。以声场中的刚硬圆柱在声波作用下的声散射问题作为切入点,对传感器的同振原理进行分析,并基于该机理以及传感器的特殊结构,提出采用注入蓖麻油的方法实现微结构的柱体与所处介质质点同振。分别采用振动台标定和驻波场测量的方法完成了传感器的灵敏度、频响以及指向性的测试,最后对2种测试结果进行了分析和比较。研究结果表明:所研制的水声传感器具有较低的工作频率,其水下自由场声压灵敏度值为-207.6dB(0 dB=1V/μPa,测试频率为200Hz),指向性网的零点深度为50.9dB。
一种新型压阻式硅微仿生矢量水听器的设计
介绍了一种新型的基于压阻效应的硅微仿生矢量水听器,详细叙述了该矢量水听器的结构设计方法,利用有限元软件ANSYS对矢量水听器结构进行了模态分析,采用振动台标定与低频校准装置测试相结合的方法对水听器进行测试,并给出了检测单元的加速度频响特性曲线和声压灵敏度曲线,以及矢量水听器在水下测试的接收灵敏度曲线和指向性图的测试结果。通过此实验方法,不仅验证了该矢量水听器设计的合理性,而且验证了它适用于低频检测,应用于水声探测具有一定的可行性。实验证明,该矢量水听器的接收灵敏度在500Hz时达到-189.6dB(0dB=1V/μPa),并具有良好的“8”字形的指向性。
基于纳机电矢量水听器的水下目标估计
纳机电矢量水听器是一种新型的声音传感器,根据鱼类侧线听觉仿生学原理设计。文中对这种传感器的定向功能进行了研究,综合国内外各种文献中的几种单矢量水听器定向算法,选取了波束形成法应用于纳机电矢量水听器。并对水听器的测向功能进行了室外水库测试,实验结果表明:在室外水库较复杂的环境中,纳机电矢量水听器能够实现声目标定位,为下一步的海洋真实环境测试打下基础。
基于MESFET的GaAs基微加速度计的设计与性能测试
利用金属-半导体结型场效应晶体管(MESFET)作为微加速度计的敏感单元,设计一种4梁-质量块微加速度计结构.通过ANSYS分析软件进行仿真,敏感单位放置于悬臂梁根部的应力最大处,以获得最大的灵敏度.将封装好的微加速度计结构,利用惠斯通电桥测试电路,检测不同载荷下的输出特性,验证了微加速度计的力电耦合效应.测试结果表明,该微加速度计的线性度较好,其最大加载范围可达到24 g,且饱和区的灵敏度可达到4.5 mV/g,为高灵敏微传感器的研究奠定了一定的基础.
红外CH4检测仪的设计
设计了一种应用红外吸收光谱原理的红外CH4气体检测仪。该检测仪用红外热释电传感器作为敏感元件,以C8051F040单片机作为智能控制单元,实现了CH4体积分数的准确测量。介绍了气室的结构设计、微弱信号的放大和数据采集的设计。通过实验数据分析,该气体检测仪具有测量精度高、稳定性好、低功耗等优点,满足了实际情况的需要。
基于介观压阻效应的高g值加速度计设计
依据介观压阻效应原理,设计出一种以超晶格量子阱薄膜为敏感单元的高g值纳机电加速度计,期望利用超晶格量子阱薄膜的高灵敏特性,提高加速度计的灵敏度。结合GaAs基表面微机械加工工艺和控制孔技术完成了加速度计的加工。采用马歇特冲击的方法完成了加速度计的测试,并利用冲击响应谱分析了微加速度计在有外部冲击情况下的响应,研究结果表明:依据介观压阻效应原理和MEMS技术制作高g值纳机电加速度计具有可行性,从测试结果可以看出该微加速度计不但冲击响应信号与标准加速度计所测信号很接近,而且它们的响应一致性较好。