基于热变形补偿的干气密封动静环优化
热变形是影响干气密封性能、使用寿命及密封失效的主要原因之一。为了获得密封性能更稳定、寿命更长的密封环,以某合成气压缩机T型槽干气密封稳态时动静环的热变形分析为例,讨论了减小热变形的各种方法。基于热变形补偿对动静环进行了优化,并对优化前后动静环的热变形进行对比分析。数值模拟结果表明:优化后的动环热变形减小,热变形锥度变化趋势与静环保持一致,气膜厚度均匀,密封性能更佳。
新型组合槽端面干气密封特性研究
为了进一步提升干气密封端面流体膜动压效应,提出一种新型组合槽端面干气密封,该组合槽由两个相邻的螺旋槽周向部分重叠组合而成,包括一个长螺旋槽,一个短螺旋槽,两槽的槽深及径向长度不同。建立该组合槽与传统槽端面密封的数学模型,并运用有限差分法对其密封性能进行数值分析。结果表明新型组合槽在端面间隙约小于1.5μm区域,流体膜开启力大于传统槽,且间隙越小,两者差值越大;泄漏量亦大于传统槽,但其值远小于泄漏量的设计值;在端面间隙约小于3.5μm区域,新型组合槽流体膜刚度显著大于传统槽,且间隙越小,两者差值越大。鉴于组合槽在泄漏量不超标的情况下,在间隙较小时端面流体膜具有更大的刚度、开启力及刚漏比,其综合性能显著优于传统槽型密封。
基于Fluent的上游泵送机械密封性能正交试验研究
提出一种斜线槽上游泵送机械密封,运用正交试验法设计上游泵送机械密封试验方案,基于Fluent软件进行数值模拟试验,分析各个试验参数对密封端面开启力和泄漏量的影响。结果表明在试验参数的取值范围内,对开启力有显著影响的因素是槽数、径向夹角、槽深、液膜厚度、转速和压差,具体表现为开启力随着径向夹角、槽深、液膜厚度、转速和进出口压差的增大呈上升趋势,随着槽数的增多呈下降趋势;对泄漏量有显著影响的因素是槽深、槽宽比、液膜厚度、转速和压差,具体表现为泄漏量槽宽比、液膜厚度、转速和进出口压差的增大呈上升趋势,随着槽数的增多而呈下降趋势。依据正交试验分析结果,提出初步优化的密封端面结构参数。
新型变齿磁流体密封结构设计及性能研究
为提高磁流体密封耐压能力,在传统磁流体密封结构基础上提出一种新型变齿磁流体密封结构。基于磁流体密封耐压理论,利用ANSYS Maxwell软件对新型变齿结构密封间隙内磁感应强度大小分布进行研究,采用控制变量法分析变齿宽系数、变齿高系数2个因素单独及共同对磁流体密封耐压性能的影响。结果表明:随着变齿宽系数的增加磁流体密封耐压能力先增加后减小;随着变齿高系数的增加磁流体密封耐压能力逐渐减小;变齿宽系数及变齿高系数两因素共同作用时,在变齿高系数及变齿宽系数均为1.1的情况下磁感应强度差最大,密封耐压性能最好。
大轴径离心压缩机磁流体密封传热特性研究
高温会降低磁流体饱和磁化强度,造成永磁铁退磁,影响磁流体密封装置的可靠性及稳定性。为探讨磁流体密封装置传热特性,以大轴径离心压缩机磁流体密封为研究对象,同时考虑磁流体摩擦热和轴承摩擦热对磁流体密封装置传热特性的影响,利用有限元数值计算与磁流体、轴承摩擦功耗理论分析相结合的方法,研究磁流体密封装置温度分布规律,分析齿宽、密封间隙和转速对永磁铁和磁流体最高稳态温度的影响,并确定相关工况所需冷却液质量流率。结果表明:由于轴径尺寸较大,表面线速度高,磁流体黏性摩擦热及轴承摩擦热对密封装置传热特性有显著影响,在无冷却工况下,密封装置最高温度超过磁流体和永磁铁的极限使用温度,需通过强制对流换热的方式进行降温处理;永磁铁及磁流体最高稳态温度随着齿宽增加而升高,随着密封间隙增加而减小;随着转速的...
离心压缩机磁流体密封设计及优化分析
针对现有密封方式难以解决离心压缩机旋转主轴线速度高所引发的密封困难问题,设计一种带有降温和降压功能的新型磁流体密封装置,基于磁流体运动方程建立考虑离心力影响的磁流体旋转动密封耐压计算公式,利用有限元数值分析方法研究该密封装置密封间隙内磁感应强度分布规律,分析各结构参数对密封性能的影响,运用正交试验和响应曲面优化方法对关键结构参数进行优化设计。结果表明:当转轴线速度较高时,离心力对密封性能有显著影响;密封压力值随着永磁铁厚度和永磁铁宽度的增加,先增加后趋于平稳,随着密封间隙的增加而降低,随着齿宽、齿高和槽宽增加,先增加后减小,各参数对密封性能的影响程度由大到小依次为密封间隙、齿宽、槽宽、永磁铁宽度、齿高、永磁铁厚度;优化后磁流体密封的结构参数为密封间隙0.1 mm、极齿宽度1.274 mm、齿高1.8...
柱塞泵用磁流体密封设计及优化
针对传统密封方式应用于往复密封存在磨损和泄漏的问题,以立式柱塞泵为研究对象,设计一种带有斯特密封的新型磁流体密封装置。利用有限元数值分析软件获得磁流体密封件间隙内磁感应强度分布,计算其理论耐压值,分析密封间隙、齿宽、齿高、槽宽等关键参数对密封压力值的影响,并运用响应曲面优化方法对其进行优化设计。结果表明:初设密封装置理论耐压值为0.483 MPa;密封压力值与密封间隙成反比,密封压力值随着齿宽、齿高、槽宽的增大先增大后减小。优化后各结构参数分别为密封间隙0.2 mm,齿宽0.627 mm,齿高1.01 mm,槽宽1.84 mm时,理论密封压力值为0.529 MPa,相比优化前提升了9.5%,且远高于实际应用密封压力值。
恒压恒流凸轮柱塞泵凸轮曲线特性分析及优化
医疗器械中体外诊断分析仪中使用的恒压恒流凸轮柱塞泵,其关键在于凸轮形成的轨迹曲线。根据柱塞运动的轨迹计算凸轮的轨迹曲线并在SolidWorks软件中进行仿真,发现凸轮的轨迹曲线与理想轨迹曲线存在偏差,从而影响凸轮柱塞泵恒压和恒流的性能。为了优化凸轮轨迹曲线,采用Catmull-Rom三次插值曲线拟合离散点及NURBS柔性曲线控制顶点位置和权因子两种设计方法,并将两种方法得出的凸轮曲线与理想轨迹曲线进行对比,结果表明:采用后一种方法,凸轮的轨迹曲线更接近理想轨迹曲线。为了验证计算结果,搭建凸轮柱塞泵测试平台,利用国外先进的微型流量计测试流量的脉动。该实验平台可以实时反馈流量的变化,并且通过曲线的形式反映优化前后的不同数据。经过测试,优化后的流量脉动及脉动率明显要比优化前的小,满足体外诊断分析仪产品的使用需求。
流体静压机械密封动力学性能分析
机械密封动力学性能对密封系统稳定性有很大的影响,微小的振动会导致密封泄漏量增加和端面磨损加剧。根据机械动力学基本原理,建立了流体静压机械密封轴向、角向振动的动力学耦合方程,并通过简化将其转化成相互独立的单自由度二阶微分方程。结合辅助密封圈的动态参数求解方法,通过MATLAB编程求出系统在内部微小扰动作用下,密封环在轴向和角向的动态响应曲线。分析表明,综合考虑振荡频率和振动幅度等因素,端面锥角保持在大于或等于2’的附近范围内,转折半径保持在大于或等于130mm的附近范围内,密封系统能够保持较好的稳定性。
外在激励对流体静压型机械密封动态稳定性的影响
机械密封动力学性能对密封系统稳定性有很大的影响,微小的振动会导致密封泄漏量增加和端面磨损加剧。根据机械动力学原理,建立了流体静压型机械密封静环轴向振动和角向摆动的动力学耦合方程,通过解耦得到两个独立的线性振动方程。在Simulink环境下。利用MATLAB软件编程模拟分析了几种典型的外在激励对密封环动态稳定性的影响,得到最佳的试验密封环结构参数值。模拟分析表明,若要密封环在角向有尽量小的摆动,就必须选取较大的转折半径,且端面锥角尽量趋向于零;若要减小轴向的振动强度,就须减小端面锥角,且尽量避免取转折半径可选范围的中间值。