一种用于微器件装配的系统设计与研制
首先概述了国内外微装配系统的研究现状,在分析微装配系统的特点和功能需求基础上,提出一种基于计算机视觉伺服控制的微装配系统设计方案,详细描述了系统中精密三维微定位工作台、SMA微夹持作业工具以及视觉伺服控制系统等关键技术的解决方案,并以直径为几百微米级的典型微轴孔的装配为目标开展各项关键技术的试验研究.
基于SMA的微夹持系统实验研究
微夹持技术是微器件装配的关键技术之一.采用柔性铰链机构设计了三自由度微夹持操作平台,并进行了有限元仿真模拟分析;利用形状记忆合金原理进行设计并研制了环状微夹钳,通过形状训练达到了双程形状记忆效应,并建立了微夹持力计算模型;对微夹持系统的运动精度进行了试验分析,结果表明该系统沿X,Y,Z方向的位移分辨率达0.01μm,微夹持钳最大张开量达0.2 mm,基本满足了系统性能要求.
一种抗灰尘的近场承载微工作台设计
为满足近场光存储的高密度、高速度和集成化的要求,提高近场界面耦合效率,消除灰尘对固体浸没透镜(SIL)的磨损,设计了一种新型的承载微工作台,并建立了系统动力学模型.微工作台正负压力并存的结构极大地提高了承载刚度及工作稳定性;气垫面的V形轨道设计及独特的负压力布局有效减少了流入SIL底面的灰尘颗粒;SIL底面刻饰的凸台有利于获得较高的近场耦合效率,同时减小了与盘面碰撞的概率.理论分析和计算表明,微工作台的近场间距小于50 nm,承载力可达88 mN,SIL底面灰尘颗粒明显减少,微工作台具有良好的工作姿态,满足了近场光存储的需要.
纳米级精度分光路双频干涉度量系统的设计
为完成快速、精确的外观轮廓度量,设计了一种新型纳米级精度分光路双频干涉度量系统。系统由低频差双频激光干涉度量模块和微探头及二维工作台两部分组成。微探针以轻敲式接近样品至几十纳米时,受原子力作用发生偏转,利用双频干涉模块度量其纵向偏转量,并对样品进行梳状式度量得到外观形貌。根据双频激光的实际光源,对原有双频干涉度量理论进行了改进提高。进行了系统组建和实验验证。结果表明:系统具有纳米级精度,可用于超精样品外观轮廓度量。
微操纵系统自动调焦方法的研究
讨论了在微操纵系统中显微成像的自动调焦方法.首先介绍了一些常用的自动调焦方法,然后重点讲述了清晰度法自动调焦原理,对各种清晰度评价函数进行了分类,并通过理论和实验分析比较了在微操纵系统中各种评价函数的性能,最后确定了适合微操纵系统的清晰度评价函数.
一种基于光学三角法的形貌测量系统
提出了一种基于光学三角原理的物体形貌测量方法.从理论上推导出了被测点的相对高度与像点距离的线性公式,通过这个公式可以由像点距离计算出被测点的高度.在实际的测量系统中,通过工作台的精确位移和像点的移动距离可标定出线性公式中的未知系数.把被测物体放在工作台上,先测出被测点的像的相对位移,然后再通过公式计算出被测点相对屏幕的距离.试验中测量了一个圆柱体上的一些点的三维坐标,通过这些数据绘出了圆柱体的三维形貌.
压电双晶片的静动态特性分析与测量
在忽略剪切振动、弯曲振动、扭转振动和横效应振动的近似条件下,分析了压电双晶片的纵效应振动。从压电方程和波动方程出发,推导出了厚度伸缩振动模式的阻抗频响和导纳频响,并在此基础上得到了纵效应振动的一般导纳公式。推导出纵效应振动的等效电路,绘制出阻抗频率响应曲线。另外,采用有限元软件对压电双晶片进行了静态变形、动态特性分析,同时进行了静态和动态测试。将理论计算、有限元分析和实验测试结果进行比对分析,三者结果吻合。
新型三维微动台的设计与试验分析
研究设计一种新型的、以压电陶瓷为驱动器的三维微动台结构.该微动台以柔性铰链为弹性导轨实现了微定位.分析所采用的直圆柔性铰链的参数变化对其造成的性能影响;提出一种新型柔性铰链结构,利用有限元分析软件ANSYS对这种新型结构进行理论分析和试验测试.试验表明采用这种柔性铰链结构的微动台刚度比较小、运动耦合误差小,定位精度优于±0.01μm.
基于测地学腐蚀的去包裹算法
相位图像去包裹运算是三维形貌测量的重要环节,用于获得真实的相位分布。该文提出了基于测地学腐蚀的去包裹算法,首先根据包裹相位图像选取mask与marker图像,并在mask图像的限制下对marker图像进行测地学腐蚀运算,然后对腐蚀后图像的补集采取相同的腐蚀运算,以消除包裹相位图的阴影、断点等噪声,最后利用五帧去包裹算法对腐蚀预处理后的相位图进行相位恢复。实验表明,该方法有效地消除了相位图像中的断点、空洞和阴影等干扰因素,为实现高精度的表面形貌测量奠定了基础。
精密工作台的设计与实验研究
微器件装配技术是实现组合结构的微机械电子学系统(MEMS)的关键技术之一,精密工作台系统则是微装配系统的一个重要组成部分.精密工作台系统包括粗动工作台和微动工作台粗动工作台包括精密机械及其传动系统、光栅定位系统、直流力矩电机驱动系统及计算机控制系统;微动工作台包括微动台、压电陶瓷驱动电源和电感测微移.实验结果表明,粗动台系统的最高速度为5mm/s,最低速度为3.4μm/s,系统的重复定位精度为±1μm;微动台系统的定位精度可达到±1μm.