运动状态下液体轴对称抛撒首次破碎的实验研究
在实验室条件下利用组合式激波管设备,对运动状态下液体轴对称抛撒进行了实验研究。通过纹影装置获得其所形成雾化场的外形轮廓照片,测量获得了液核发生首次破碎的位置与对称轴之间的距离。通过对抛撒过程中R—T不稳定性与K—H不稳定性的分析认为,轴向气流作用下液体轴对称抛撒的首次破碎点与对称轴的距离主要由轴向气流的速度、轴向气流的密度、液体轴对称抛撒的出口速度、抛撒液体的表面张力系数、环形喷口的宽度等参数所决定。在此基础上,利用相似性理论和无量纲分析,获得了运动状态下液体轴对称抛撒首次破碎点与对称轴之间的距离与相关参数的无量纲关系式。
超临界CO2喷射压裂射流密封机理
超临界CO2(SC-CO2)喷射压裂技术有望成为非常规油气资源的高效开发手段。为了探明其射流密封机理,开展了SC-CO2喷射压裂作业时环空、孔眼及裂缝中的流场数值模拟研究。结果表明SC-CO2喷射压裂作业时SC-CO2射流在环空附近形成低压区,促使环空流体进入地层孔眼而不进入已压开裂缝中,从而实现射流密封;SC-CO2喷射压裂的射流密封效果与喷嘴压降和喷嘴直径正相关,与套管孔径和环空压力反相关,而受到SC-CO2流体温度的影响极小;在相同的模拟条件下,SC-CO2喷射压裂的射流密封效果强于水力喷射压裂。
直旋混合射流破岩钻孔参数试验研究
直旋混合射流是由通过喷嘴叶轮中心孔的直射流和叶轮加旋槽产生的旋转射流经混合段混合而成的一种新型高效射流,它综合了旋转射流破岩面积大和直射流破岩深度大的优点。试验研究了叶轮中心孔直径、混合段长度、扩展腔扩展角、喷距和压力等5个主要参数对直旋混合射流破岩效果的影响规律。结果表明,叶轮中心孔直径为2mm、混合段长度为8mm、扩展腔扩展角为60。的喷嘴产生的射流具有较强的破岩能力;试验条件下,直旋混合射流破岩最优喷距约为喷嘴出口直径的6倍;增大射流压力可以大幅提高直旋混合射流的破岩体积。
多孔式射流钻头流场数值模拟研究
多孔式射流钻头是应用于径向水平井技术的一种新型射流钻头。本文建立了多孔式射流钻头流场计算模型,采用RNGk—ε湍流模型进行数值计算,分析了射流钻头内外不同区域的流场分布情况和局部流动特性。模拟计算结果表明:多孔式射流钻头有效扩大了井底冲击区,有利于扩大成孔直径;反向射流冲刷井壁,可以进一步扩大孔径,其反推力平衡了正向射流的反推力,有利于轨迹控制;反向射流的附壁作用,增大了喷嘴局部阻力系数。射流钻头人口及环空的压力和流量的数值模拟结果与试验测试结果一致。
围压下磨料射流套管开孔形状和时间参数试验研究
水力喷射径向水平井和水力喷射分段压裂技术可为低渗透等难动用油气藏提供两种经济高效的开采途径,应用高压磨料射流喷射进行套管开孔是其中关键技术。在分析了磨料射流工作机理的基础上,采用专门的围压装置及相应的试验台架,对磨料射流在围压下射穿套管的形状和时间参数进行了试验研究。着重研究了喷嘴压降、围压、喷距和喷嘴直径对射穿套管时间的影响,得出以下结论:随着喷嘴压降的增大,射穿套管时间缩短;随着围压的增大,射穿套管的时间延长;随着喷射距离的增大,射穿套管的时间延长;随着喷嘴直径的增大,射穿套管时间缩短。在本试验条件下,磨料射流射穿套管的孔径在10~14mm,射穿时间在18~330s范围内。
高压水射流深穿透射孔试验研究
在前期研究高压水射流深穿透射孔机理的基础上,研制了新一代高压水射流深穿透射孔井下装置,并结合江苏油田油井的实际井况,研究制定了现场选井条件、水力参数、井下施工管柱组合、工作液配方和施工工艺等,计算了油管伸长量,实现了现场施工作业设备和施工参数的配套。现场试验结果表明,该技术可用于井斜角达45。的井中深穿透射孔,射孔速度可达2m/h,射孔深度可达2m,增产效果良好。
径向水平井自进式旋转射流钻头流场特性分析
为解决径向水平井钻进过程中破岩效率和自进能力的问题,设计了一种自进式旋转射流钻头。运用数值模拟方法,采用RN G k-ε湍流模型对所设计射流钻头的内外流场进行了三维流动特性分析,并分析了射流钻头结构参数对喷嘴流场特性的影响规律,进一步优化了自进式旋转射流钻头。结果表明,自进式旋转射流喷嘴外流场的轴心速度在喷嘴中心线上的速度最大,随着径向半径的增大,轴向速度迅速减小;切向速度沿喷嘴径向呈现出经典的“N”形分布,有利于增大射流破碎岩石的深度和破碎面积;径向速度呈轴对称分布,存在明显的漫流层,有助于岩屑的脱离;自进式旋转射流钻头导向叶轮的螺距和导叶数量,对射流速度有着重要的影响;喷嘴直径对射流流场特性的影响较大。经过优化,得到射流钻头的叶轮螺距16mm,导叶数为2,喷嘴直径为1mm。
多孔射流钻头破岩钻孔规律试验研究
利用自行研制的射流破岩系统,对淹没和围压条件下多孔射流钻头的破岩钻孔规律进行了试验研究,重点考虑了水力参数(冲蚀时间、射流压力、围压、喷距)和结构参数(孔眼数量和侧向孔眼扩散角)对破岩效果的影响,结果表明:随着冲蚀时间的增加,破岩效果先增加,后趋于平缓;随着射流压力的增大破岩效果随之增大;随着围压的增加破岩效果随之减小;随着喷距的增加破岩效果呈先增大后减小的趋势,存在最优喷距范围;随着孔眼数量的增多,破岩成孔形状越来越圆整;随着侧向孔眼扩散角的增大,破岩效果呈先增大后减小趋势,存在最优扩散角范围。试验结果可为多孔射流钻头水力参数选择和结构参数设计提供依据。
新型旋转射流多孔喷嘴流场的分析
设计了一种适用径向水平井技术的旋转射流多孔喷嘴。其前端面均布3个不同切向倾角15°、30°、45°的孔眼。利用数值模拟方法,采用 RNG k -ε湍流模型对该喷嘴流场特征进行了研究,并与试验破岩结果进行了对比。结果表明,15°孔眼轴向速度较大,扩散性差,衰减缓慢,类似直射流,破岩效果适中;30°孔眼轴向、径向、切向速度均较大,扩散性适中,衰减较慢,其破岩效果最佳;45°孔眼虽具有较高切向、径向速度,但扩散性较强,衰减较严重,可形成较大破岩面积,但破岩深度有限;3个孔眼破岩面积在径向存在重叠,当喷嘴旋转时,可轨道扫描式完成联合破岩;不同倾角破岩效果不同,本试验中30°倾角的孔眼破岩效果最佳。流场数值模拟结果与实际破岩效果基本一致。
多孔喷嘴能量转化效率分析
多孔喷嘴是径向水平井技术的核心技术装备,需同时实现高效破岩与强力自进,而目前常用的多孔喷嘴的流量系数一般在0.6左右,其能量转换效率仅为36%左右,严重限制了多孔喷嘴的整体性能。因此,研究多孔喷嘴流量系数影响规律十分必要。根据流量系数定义推导了多孔喷嘴流量系数,试验确定了各孔眼局部阻力系数,并研究了排量、孔眼数量对多孔喷嘴流量系数影响规律。结果表明,多孔喷嘴能量转化效率等于其流量系数的平方;其流量系数由各孔眼流量系数与其权重决定;孔眼流量系数主要取决于其沿程阻力系数与局部阻力系数;绝大部分能量损失由局部阻力损失引起;而孔眼局部阻力系数随着排量增加略有降低,但随着孔眼数目增加而迅速增大。