高压气体密封橡胶O形圈往复摩擦特性实验研究
采用往复摩擦实验研究高压气体密封条件下橡胶O形圈的摩擦性能,分析密封压力大于3 MPa条件下密封压力、压缩率和橡胶材料对O形圈往复运动摩擦性能的影响规律。结果表明高压条件下O形圈所呈现的摩擦力-位移时变曲线特征与低压条件相同,且黏滞特性明显。高压条件下随着密封压力的增加,丁腈橡胶O形圈最大摩擦力和滑动摩擦力呈线性增长,与低压下最大摩擦力存在极大值和滑动摩擦力趋于稳定不同;高压条件下丁腈橡胶O形圈的最大摩擦力与压缩率呈非线性关系,最大摩擦力存在极大值,与低压下最大摩擦力随压缩率的增大而增大不同;与丁腈橡胶材料不同,三元乙丙橡胶、硅橡胶和氟橡胶的摩擦力随密封压力的增加而逐步增加并趋于平稳,且摩擦力小于丁腈橡胶。
螺旋槽端面气膜密封结构高温特性研究
为了研究螺旋槽端面气膜密封结构在高温下的密封性能,建立了高温密封分析数学模型,研究了螺旋槽气膜密封的气膜温度、压力以及端面变形分布规律,在此基础上探讨了螺旋槽气膜密封的热变形机理,并进一步分析了不同密封压力、转速、环境温度下热效应对开启力和泄漏率的影响。结果表明在高压、高速条件下,热效应使端面形成发散间隙,导致开启力减小,泄漏率增加;在低压、高速条件下,热效应使端面形成收敛间隙,导致开启力及泄漏率增大。对于螺旋槽端面气膜密封结构,环境温度的升高对端面变形的影响不明显,且环境温度从300 K升至550 K时,考虑端面热效应的开启力减小4%,泄漏率减少36%。
波度对高温螺旋槽端面密封气膜承载能力的影响
基于表面粗糙和波度假设,考虑接触摩擦热,建立了高温螺旋槽气体端面密封润滑分析模型,采用有限差分方法对气膜压力、温度分布和表面接触力进行了数值迭代求解,重点分析表面波度对气膜承载力和泄漏率的影响规律。结果表明表面波度对螺旋槽密封气膜压力分布、承载能力和泄漏率影响明显,全膜润滑状态下表面波度使得气膜承载能力下降、泄漏率增加,在3~5μm膜厚设计区间内,表面波度波幅增加到0.8~1.5μm可使得气膜开启力下降5%,泄漏率增加50%以上;混合润滑或小膜厚状态下,接触摩擦热可导致明显的气膜温升,并且表面波度可使气膜承载能力和泄漏率增加;螺旋槽密封气膜承载能力和泄漏率随环境温度的增加均呈现单调增加的变化趋势,温升200 K条件下开启力、泄漏率的增幅均可达到10%。
环瓣式浮环密封表面瑞利台阶型槽气体润滑动压特性
为提高密封气膜的开启能力以满足长寿命设计要求,基于气体润滑理论研究了环瓣式浮环密封表面瑞利台阶型槽的动压特性。采用有限差分方法,数值计算了密封气膜压力分布和动压效应,分析了操作参数和型槽几何参数对密封气膜压力和泄漏率的影响规律。结果表明,表面瑞利台阶型槽可以产生明显的气体润滑动压效应,可使得密封气膜平均压力和泄漏率分别增加38.6%和10.3%;型槽几何参数对动压效应影响明显,槽宽、槽数和槽深的增加均可使气膜平均压力增加;随着槽宽和槽数半径比的增加,无量纲平均压力先增加后减小。
表面波度对泵用液体圆孔端面密封泄漏特性的影响
考虑密封端面粗糙度、周向表面波度以及空化效应,建立液体圆孔端面密封分析数学模型,通过数值求解不同圆孔排布方式下液体端面密封的压力分布和泄漏率,分析表面波度几何参数(波高、波数)和密封工况参数(转速、密封压力、膜厚等)对开启力和泄漏率的影响。结果显示:周向表面波度明显改变密封端面压力分布;随着波高的增加,密封泄漏率逐渐增加,并且径向局部开孔端面密封的泄漏率小于径向全开孔端面密封的泄漏率,但当膜厚为2μm时,密封端面局部开孔时的泄漏率反而较大;在低压工况下,波数对两种排布端面密封的泄漏率无明显影响,随着压力的增加,周向波数使得径向全开孔端面密封的泄漏率逐步减小;液体圆孔端面密封的泄漏明显受到转速、密封压力和膜厚的影响,密封压力增加密封泄漏也增大,而转速和膜厚增加密封泄漏则逐渐减小;在高速下,密...
液体椭圆孔端面泵用机械密封特性试验
为了探究液体椭圆微孔端面密封特性,通过液体密封试验考察了微孔端面密封的泄漏控制规律,对2种椭圆微孔端面和1种光滑端面开展对比研究,研究了不同压力和转速工况下泄漏率和温升的变化规律。试验结果表明:密封表面双列椭圆微孔设计在高速下可明显降低摩擦温升,转速达到15000 r/min时,最高可降低80℃;合理的反向椭圆微孔可以降低并控制密封泄漏;椭圆多孔密封端面在多转速工况时存在增加磨损的风险,通过合理的反向椭圆微孔设计可一定程度上减缓端面磨损。
氟橡胶O形圈往复运动回弹摩擦特性实验研究
对低气体压力密封条件下氟橡胶O形圈的往复运动回弹摩擦特性展开实验研究。采用O形圈往复摩擦磨损实验台对氟橡胶O形圈与2Cr13不锈钢摩擦副摩擦力-位移曲线进行测量,分析运动位移、压缩率和密封压力对氟橡胶O形圈回弹摩擦性能的影响规律。结果表明6%~15%压缩率条件下,在1mm往复运动范围内,氟橡胶O形圈的回弹摩擦力随位移增加呈现线性增加;往复运动位移超过1mm后,氟橡胶O形圈的回弹摩擦力稳定,不再随位移增加而发生明显变化;O形圈回弹摩擦力随压缩率增大而增大,密封压力越高回弹摩擦力越大。
热冲击对流体静压型机械密封性能影响的研究
考虑密封介质粘度随压力和温度的变化,建立了流体静压型机械密封的流体润滑理论模型,采用有限差分法对广义Reynolds方程、广义能量方程、热传导方程等控制方程进行耦合求解,获得了介质温度瞬时升高对机械密封温度分布及密封性能参数的影响规律。结果表明,密封介质温度瞬时升高使端面开启力先增大后减小,泄漏率增大,液膜中各点温度值升高,而摩擦力减小,随着时间延长最后各密封性能参数均趋于稳定值;当热惯性系数较小时,开启力和泄漏率初始阶段增大趋势快,摩擦力减小趋势快,对于不同热惯性常数,密封性能参数达到的稳定值不变。
基于LabView的机械密封试验数据采集与控制
基于LabView软件开发了机械密封试验数据采集系统,分析了采集系统的基本要求及其基本框架结构,实现了系统的自动控制、数据采集、数据实时显示、数据存储以及历史数据查询等功能。介绍了试验系统软件的实现方法,并给出了系统自动控制、参数设置、数据采集、数据定时保存、数据分析和实时波形显示等关键环节的设计要点和具体程序框图。最后对所设计的数据采集系统进行了性能测试,结果表明所设计的系统可以满足机械密封试验的要求。
LaserFace液体润滑端面密封性能研究
LaserFace液体润滑端面密封(LF-MS)能提供全膜润滑,密封寿命得到延长,可以应用于几乎所有清洁液体介质润滑的场合,特别适用于易汽化介质等苛刻工况。针对LF-MS,采用混合接触理论,建立了其二维数学分析模型,通过液膜压力分布和液膜速度场的分析揭示了LF-MS的工作机理,对比分析了等深和变深动压槽LF-MS、普通平面端面密封及含矩形引流槽端面密封等4种不同端面结构机械密封的性能。结果表明:LF-MS具有端面动压效应好、摩擦系数低及液膜刚度高的优点,综合性能明显优于普通端面密封和含矩形引流槽端面密封,且与等深动压槽相比变深动压槽对提高LF-MS的密封性能作用明显。