碧波液压网 欢迎你,游客。 登录 注册

基于MFCC特征和GWO-SVM的托辊故障诊断

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
5.67 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对目前带式输送机托辊故障诊断方法存在接触式测量、准确率低、井下大范围检测困难等问题,提出了一种基于MFCC特征和参数优化SVM的托辊故障诊断方法。利用变分模态分解(VMD)将采集到的托辊声音信号分解为若干本征模态分量(IMF),并基于包络熵和峭度组成的复合指标优选IMF分量;提取所选分量的梅尔倒频谱系数(MFCC)作为特征,利用灰狼优化算法(GWO)优化SVM参数;将样本特征向量输入GWO-SVM中进行故障分类。结果表明:对于正常托辊、托辊内圈故障、托辊外圈
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论