基于DEMD的高压隔膜泵单向阀早期故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.56 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
5
简介
针对高压隔膜泵单向阀的早期故障特征提取困难的问题,提出基于微分经验模态分解(differential empirical mode decomposition,简称DEMD)的高压隔膜泵单向阀早期故障诊断方法。首先,对振动信号进行微分运算,提高高频成分的振幅比,使微弱高频成分在后续分解中更易提取;其次,对得到的新信号进行经验模态分解(empirical mode decomposition,简称EMD),并将分解后的本征模函数(intrinsic mode function,简称IMF)分量信号进行积分还原;最后,计算分量信号与原振动信号的Kullback-Leibler散度(Kullback-Leibler divergence,简称K-L散度)值,选取K-L散度值较小的分量信号进行重构,并利用Hilbert边际谱对重构信号进行瞬时频谱分析,以提取故障振动信号的特征。仿真与工程实验分析表明,该方法能够较好地提取出单向阀早期故障特征信息。相关论文
- 2021-04-19低熔点金属熔融三维直写技术研究
- 2021-01-12连续油管喷射钻进中新型喷头的研发
- 2021-02-03人工降雨系统喷头特性研究
- 2021-05-28含能材料3D打印机喷嘴参数对挤出速度的影响
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。