碧波液压网 欢迎你,游客。 登录 注册

基于小波包分解与K-L变换的齿轮泵振动信号故障特征提取方法

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
340KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对齿轮泵故障成因复杂、模糊性强的特点,结合小波包分解与K-L变换,提出一种适用于支持向量机故障诊断的特征提取方法。通过小波包对样本故障振动信号进行分解得到特征向量,而后利用K-L变换处理得到新的特征向量集,达到降维去噪的目的。将处理后的特征向量集用于支持向量机的模型训练,分析结果表明:该方法能够有效提高故障模式识别准确率和识别效率。
标签: 齿轮泵 振动
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论