碧波液压网 欢迎你,游客。 登录 注册

超大口径弯月镜支撑点布局-刚度-校正力联合优化

作者: 习兴华 张超杰 胡海飞 关英俊 来源:光电工程 日期: 2025-01-18 人气:144
在超大口径原位加工与检测中,目前多采用被动式Whiffletree液压支撑系统(原位支撑),而该类支撑单元的轴向刚度存在较大差异性,会显著影响轻薄型反射镜的面形精度。为解决这一问题,研究了主动型原位支撑的支点布局、单元刚度和主动校正力的联合优化方法。首先,针对支撑单元刚度差异,提出了支撑刚度、支点位置的分级布局优化方法,获得了支撑系统的初始优化解;其次,结合模式定标法和最小二乘法,进行了支撑点主动力校正,以获得支撑面形的最终优化解;最后,结合具体案例的数字仿真试验,验证了方法的有效性。结果表明对于4 m弯月型轻薄反射镜,仅被动支撑下,分级布局优化后,60点方案面形精度RMS值由150.6 nm减少到32.9 nm,78点方案面形精度RMS值由45.2 nm减少到22.6 nm,优化效果显著;进一步经主动校正后,60点方案和78点方案面形精度RMS值分别为14.6 nm和6.9 nm,...

透镜主动光学的像差补偿性能

作者: 孙振 巩岩 来源:光电工程 日期: 2024-10-28 人气:7
透镜主动光学的像差补偿性能
针对透射式投影物镜中由于不均匀照明产生的像散,提出了采用平面透镜作为主动光学元件以补偿像散的方法。本文对直径为Φ140mm,通光孔径为Φ120mm的平面透镜的支撑结构进行设计和有限元分析,分析了支撑结构的各个关键参数、镜片厚度和驱动力大小对面形的影响,得到了支撑结构的关键参数和驱动力对面形的影响规律为线性曲线,镜片厚度对面形的影响规律为指数下降曲线和不同驱动力导致的面形图。结果表明,本支撑结构在补偿像散时,面形补偿分辨率约为2nm,引入的高阶像差可以忽略,设计分析结果为投影物镜中主动光学镜片的选择和支撑结构的设计及实验提供依据。

薄镜面主动光学对光学像差的校正能力分析

作者: 王富国 李宏壮 杨飞 来源:光子学报 日期: 2024-04-08 人气:19
薄镜面主动光学对光学像差的校正能力分析
建立了薄镜面主动光学的仿真模型,并进行了仿真分析,结果表明薄镜面主动光学可以对低频误差完成较好的校正.为了进一步验证,建立了一套薄镜面主动光学实验系统,开展了薄镜面主动光学实验.结果表明,通过主动光学校正可以把镜面面形校正到磨制时的面形即λ/10.同时发现,薄镜面主动光学对三阶像散和三阶球差的校正能力最好,三叶彗差的校正能力也较好,而三阶彗差最难校正,这对于磨制大型薄镜面具有一定的指导意义.

主动光学系统力促动器的设计和测试

作者: 张丽敏 张斌 杨飞 明名 来源:光学精密工程 日期: 2024-03-01 人气:7
主动光学系统力促动器的设计和测试
设计了一套用于控制薄镜面主镜面形的力促动器,并进行了实验测试。分析了常用的可以实现高精度、高稳定性的力促动器结构形式;结合实际情况和目前薄镜面主动光学实验系统的要求,设计了由步进电机驱动谐波减速器、精密丝杠传动,S型Loadcell反馈输出力变化的力促动器结构。最后,通过开环和闭环实验对结构进行了测试。实验结果表明,该力促动器行程为0~10 mm,输出力为—100 ~100 N,精度优于0.05 N,满足大行程、高精度微量输出和高稳定性要求,可以应用于主动光学支撑系统,同时也适用于其他精密调整结构。

400mm薄镜面主动光学实验系统

作者: 李宏壮 林旭东 刘欣悦 王富国 杨飞 明名 王建立 韩昌元 来源:光学精密工程 日期: 2024-01-30 人气:23
400mm薄镜面主动光学实验系统
采用400mm口径,12mm厚的球面反射镜进行了主动光学实验。实验镜支撑结构由背部12个主动支撑点和3个固定支撑点组成。主动支撑点用压电陶瓷促动器和压力传感器组成力促动器,用于控制实验镜面形;固定支撑点用于控制实验镜的定位。实验中通过干涉仪测试镜面面形。分别测量出反射镜在单独一个促动器施加单位作用力前后的镜面面形,求出这两个面形之差得到该促动器的响应函数,由各促动器的响应函数组成刚度矩阵,然后用阻尼最小二乘法计算各支撑点的校正力。最后,通过PID算法闭环控制各促动器施加力的过程。经过3次校正,将初始状态的1.22XRMS的面形误差校正到0.12kRMS,接近了镜面加工的0.1XRMS面形精度,说明所采用的主动校正算法和过程正确可行。

用于主动光学的气体力促动器设计

作者: 余正洋 李国平 来源:液压与气动 日期: 2020-08-06 人气:181
用于主动光学的气体力促动器设计
鉴于气体促动系统简单、经济并具有快速反应的特点,设计了一种用于主动光学的无摩擦线性气体力促动器结构,以及相应的高频高精度电磁比例调压阀,并做了仿真分析和实验验证,结果表明比例阀调压的气体力促动器输出力在±100N范围内精度可达O.05N,PID控制的力促动频率达到0.5Hz以上。
    共2页/16条