面向回转机组电机小样本复合故障的多源异构自适应迁移学习
针对单源信号对回转机组电机多点复合故障信息表征不充分及复合故障信号小样本问题,提出一种小样本下电机复合故障的多头卷积神经网络迁移学习模型,实现小样本下电机复合故障的多源异构迁移诊断。将动力装置中电流、振动等多源原始数据作为输入,构造超参数优化的多头卷积神经网络模型。将大样本单故障的原始数据集作为源域,构建目标域下以原始数据为输入的电机小样本复合故障迁移网络模型。将正则化惩罚项应用到迁移学习模型中,构建模型目标函数参数更新准则,实现模型对源域与目标域参数的自适应更新配适。试验结果表明:单源信息的诊断可靠性依赖于数据源的选取,多源信号的多头卷积神经网络模型可有效融合电流、振动信号并实现特征提取。通过与多个模型比对,所提方法在小样本下对电机复合故障的识别精度显著提升,且收敛时间...
基于MED-MOMEDA的风电齿轮箱复合故障特征提取研究
强噪环境下,齿轮箱复合故障中的微弱故障特征难以提取,因此提出了基于多点最优最小熵反褶积(MOMEDA)的复合故障提取方法。首先对最小熵反褶积(MED)和最大相关峭度反褶积(MCKD)两种方法进行改进,以多点峭度最大值为目标,对信噪比不同的仿真信号,通过设置合理的周期区间逐个追踪复合故障的周期成分,验证了此方法降噪性能;然后将MED-MOMEDA应用风电齿轮箱复合故障实验台中,成功提取出复合故障特征;最后用文中所提方法与EEMD对比分析进一步验证了此方法的可行性。
滚动轴承故障动力学建模及振动响应特性分析
为更精确地研究轴承故障机理,放弃了传统球匀速公转的假设前提,考虑了球与沟道间的相对滑动作用和润滑牵引作用,以Gupta模型为基础建立了单点损伤及复合故障轴承的动力学模型,探索了单点损伤及复合故障对轴承内部接触载荷及轴承振动特性的影响规律,为滚动轴承故障诊断奠定了基础。
基于混合蛙跳算法优化神经网络的齿轮箱故障诊断研究
为提高齿轮箱故障诊断的准确性,探寻诊断复合故障的方法,利用混合蛙跳算法优化BP神经网络的参数,构建SFLA-BP算法模型,在一定程度上弥补BP神经网络算法的缺陷。对比发现,该诊断方法具有较高的稳定性和较强的诊断能力,表现出很好的适用性,特别是在诊断复合故障方面具有一定潜力。
基于并行算法的证据理论合成器的复合故障诊断
针对旋转机械复合故障的不确定性和模糊性,在蚁群神经网络的基础上,引入并行机制改进算法.利用多线程技术增大蚁群的搜索区域,同时采用编码映射匹配法则(EMM)提高匹配效率,缩短蚁群寻路时间,加快算法收敛速率,并对BP神经网络进行优化,结合概率转化(BPA)辅助决策.计算结果表明,合成器对复合故障识别率高,与人类决策一致,对其他模拟进化算法有借鉴意义.
基于盲源分离的液压泵复合故障诊断
当机械设备多故障并发时,在每个测点测得的信号往往是多个故障信号的叠加,傅里叶变换、小波变换等传统方法都难以有效地分离故障特征。为了克服上述方法的缺陷,利用基于峭度的独立成分分析算法RobustICA对复合故障信息进行分离,提取故障特征。对4种不同信号进行随机混叠而生成的混合信号进行分离,仿真验证了RobustICA算法的有效性。最后,对轴向柱塞泵出现滑靴与斜盘磨损时的复合故障振动信号进行了分离实验,达到了良好的分离效果,证明了该方法对于液压泵复合故障振动信号进行分离的有效性。