聚氨基酸衍生型膦酸基减水剂的合成与性能研究
通过聚琥珀酰亚胺(PSI)与氨基开环反应,成功合成了一种新型聚氨基酸衍生型膦酸基减水剂(PSI-g-PEGAP),研究了该减水剂对水泥基材料的影响规律,并与聚羧酸减水剂(PCE)在硫酸盐耐受性方面进行了比较。此外,根据吸附测试、动态光散射表征等,分析了PSI-g-PEGAP与水泥颗粒的相互作用。结果表明:通过引入膦酸基,明显提升了减水剂的减水、保坍性能,且平衡吸附量可增大1倍;与PCE相比,流体力学直径明显增大约10倍,对硫酸盐耐受性也有显著提高。
盐渍土腐蚀环境下混凝土抗硫酸盐侵蚀性能研究
为研究盐渍土腐蚀环境下混凝土的抗硫酸盐侵蚀性能,根据兰州市地下水及地下土壤侵蚀离子浓度,制备了4500 mg/L的MgSO4侵蚀溶液,对不同水胶比(0.25、0.35、0.45)及不同粉煤灰掺量(15%、30%、45%)的普通混凝土进行室内长期浸泡侵蚀试验,采用相对质量评价参数ω1与相对动弹性模量评价参数ω2来评价混凝土试件被侵蚀的情况。结果表明:随着浸泡时间的延长,所有试件的ω1与ω2均呈先增大后波动式下降趋势;水胶比为0.35、粉煤灰掺量为30%时,混凝土的抗MgSO4侵蚀性能较好。
基于硫酸盐侵蚀的混凝土干湿循环制度研究
设计了四种干湿比(1∶1、3∶1、5∶1、7∶1)和两种干燥方式(烘箱干燥、自然干燥),通过相对抗压强度和相对动弹性模量的变化研究了干湿循环下硫酸盐侵蚀混凝土的力学性能劣化规律,并利用扫描电子显微镜、X射线衍射仪和压汞仪探究了微观结构的演变过程。结果表明:硫酸盐侵蚀混凝土的力学性能呈现先增加后降低的趋势;烘箱干燥和自然干燥下,混凝土劣化相对较严重的干湿比分别为3∶1和5∶1;混凝土孔隙总体积随龄期的延长不断降低,其中,有害孔(50 nm≤d≤200 nm)的减少是孔隙细化的最主要原因。
硫酸盐环境下CFRP加固顺序对混凝土梁界面黏结性能影响
提出了先粘贴CFRP后硫酸盐腐蚀以及先硫酸盐腐蚀后粘贴CFRP两种加固顺序,开展了64块CFRP-混凝土试件的双剪试验,分析了CFRP粘贴顺序、粘贴长度、粘贴宽度对混凝土界面破坏模态、抗压强度、剥离荷载、黏结强度、界面能、黏结应力-滑移曲线的影响,并基于硫酸盐环境影响系数建立了CFRP-混凝土界面黏结强度模型。试验结果表明,硫酸盐环境下,环氧树脂胶体能较好的保护混凝土黏结区域;随着硫酸盐腐蚀时间的延长,界面的剥离荷载、黏结强度均呈下降趋势,腐蚀至123 d时,下降最为严重,而对于界面断裂能,腐蚀至123 d时,下降幅度反而降低;CFRP黏结长度为65 mm下的界面黏结强度最大,随着黏结长度的增加,CFRP-混凝土界面的黏结性能逐渐降低;硫酸盐环境影响系数的提出可为恶劣环境的分类提供科学依据。
基于SO42-吸附与反应的硬化水泥基材料中Cl-传输与固化机制
通过自行设计的离子空间传输试验装置,分析研究了硫酸盐和氯盐的空间传输性能,并通过测试硫酸盐和氯盐共存时产物的组成和形貌,分析硫酸根离子对氯离子固化行为的影响。结果表明,在SO42-与Cl-共存的情况下,Cl-在不同时间和空间传输量较纯溶液时均有减小,说明SO42-会阻碍Cl-的传输;SO42-与Cl-均可与水泥基材料的水化产物发生反应,其中SO42-反应生成AFt,Cl-反应生成Friedel盐,当两者共存时,Friedel盐生成量减少,说明SO42-会减弱Cl-的固化能力,从而减弱混凝土结构中氯盐的腐蚀破坏程度。
毛细作用下硫酸盐溶液在水泥基材料中的传输研究
硫酸盐溶液在混凝土中的传输速率是造成硫酸盐对混凝土侵蚀破坏的主要控制因素,硫酸盐溶液在混凝土中传输速率越大,单位时间内进入混凝土中的硫酸盐溶液越多,溶液中水分蒸发速率越快,则对混凝土造成的侵蚀就越显著。通过试验研究了毛细作用下硫酸盐溶液在水泥基材料中传输的影响因素。试验结果表明,低水灰比条件下水泥砂浆的硫酸盐溶液的传输能力显著降低;掺入适量的超细矿渣粉和粉煤灰可以改善水泥砂浆的抗渗性能;在相同浓度下,水泥基材料对硫酸钠的吸附能力最强,硫酸铵次之,硫酸镁最弱。
硫酸盐环境下粗糙度对CFRP-混凝土界面黏结应力试验研究
为了考察硫酸盐环境下CFRP-混凝土界面黏结性能的退化规律,开展了162块CFRP-混凝土试件的单剪试验,研究了混凝土黏结面粗糙程度、混凝土强度等级、腐蚀龄期对CFRP-混凝土界面极限荷载、最大滑移量、黏结强度、断裂能的影响,并基于SEM扫描电镜技术分析了界面破坏机理。结果表明,混凝土强度从C30提升至C50,极限荷载上升幅度在1%~7%不等,总体上混凝土强度等级对提高界面黏结性能的影响不明显;硫酸盐环境下,环氧树脂胶体能较好的保护CFRP黏结区域;随着腐蚀龄期的增长,CFRP-混凝土界面的黏结性呈先增高后降低的趋势,增强点出现在第7天,30 d后界面极限荷载呈高速下降趋势;界面能在7 d时达到最大,随后逐渐降低;硫酸钠晶体的膨胀劣化是影响CFRP-混凝土界面黏结性能的主要因素。
干湿循环作用下再生混凝土中硫酸盐传输性能研究
研究了在干湿循环作用下,硫酸根离子在再生混凝土中的传输规律。采用分光光度计法定量表征不同深度处的水溶硫酸根离子浓度,研究再生粗骨料取代率(0,30%,50%,70%,100%)、矿物掺合料、水胶比、腐蚀龄期及干湿循环制度对其传输规律的影响。结果表明,再生粗骨料的掺入对硫酸盐传输有较为明显的影响。试验还表明,硫酸盐-干湿循环耦合作用下,粉煤灰和矿粉等矿物掺合料可阻碍硫酸根离子在再生混凝土中的传输,再生混凝土水胶比越小其水溶硫酸根离子浓度越小。随着腐蚀龄期增长,再生混凝土水溶硫酸根离子浓度大幅增加。与单一盐溶液侵蚀相比,干湿循环加剧了硫酸根离子在再生混凝土中的传输,其水溶硫酸根离子浓度随着循环次数的增加而增大。
干湿交替作用下混凝土抗硫酸盐侵蚀性能研究
研究了干湿交替-硫酸盐溶液耦合作用下混凝土的损伤过程,以混凝土相对动弹性模量的变化来表征混凝土内部的损伤程度。采用环境扫描电镜(ESEM)分析了干湿交替与硫酸钠溶液作用下混凝土的微观结构。结果表明,与自然浸泡硫酸盐溶液腐蚀方式相比,干湿交替作用加剧了混凝土在硫酸盐溶液中的损伤程度;干湿循环早期,硫酸盐对混凝土有填充空隙缺陷的作用。同时试验表明,水胶比对混凝土的相对动弹性模量有重要影响;矿物掺合料的加入能显著提高混凝土的抗硫酸盐侵蚀能力。
冻融与硫酸盐复合侵蚀下粉煤灰混凝土的耐久性研究
通过分析混凝土表观变化形态、抗压强度和相对动弹性模量随冻融循环次数变化的规律,讨论了不同粉煤灰掺量混凝土(0、10%、20%)与5%Na2SO4溶液耦合作用下的损伤劣化机理。借助SEM和XRD技术研究了混凝土微观结构和侵蚀产物发展演化规律,并综合热分析技术定量分析了不同粉煤灰掺量对混凝土抗冻融与硫酸盐复合侵蚀能力的影响。结果表明:在冻融试验终止时,10%、20%粉煤灰掺量混凝土强度损失率分别为60.36%、83.67%,10%粉煤灰掺量相对于20%粉煤灰掺量混凝土具有良好的抗冻性。在冻融循环100次前,混凝土试样相对动弹模量一直处于递增状态。在硫酸盐侵蚀条件下,混凝土中钙矾石含量要多于石膏。在冻融循环50次时,不同粉煤灰掺量混凝土试样中侵蚀产物含量大小排序为:20%粉煤灰>未掺粉煤灰>10%粉煤灰。