基于SPS与CNN的行星齿轮箱故障特征提取与诊断研究
针对行星齿轮箱结构和运行工况复杂,导致信号故障特征提取困难的问题,通过分析行星轮系振动机理,初步推导出含故障齿轮箱振动信号频谱特征;运用谐波乘积谱(Harmonic product spectrum,HPS)与边带乘积谱(Sideband product spectrum,SPS)的方法,在噪声干扰以及故障冲击不明显的条件下,准确提取到了仿真信号的故障特征频率。进一步采集不同运行工况、不同故障状态下的行星齿轮箱振动信号,将提取后的故障特征输入到卷积神经网络中进行故障识别,成功获取到齿轮箱的故障信息,证明了该方法在行星齿轮箱故障诊断方面的可行性。
基于参数优化VMD的齿轮箱故障特征提取方法
为解决齿轮箱故障振动信号信噪比低、故障特征提取难的问题,提出了基于参数优化变分模态分解(VMD)的齿轮箱故障特征提取方法。首先,以分解结果的局部极小包络熵最小为目标,利用果蝇算法搜寻VMD分解参数K和α的最优组合;将原始信号分解成若干IMF分量,从中选择包络熵较小的分量进行信号重构,并对重构信号进行包络解调运算,从重构信号的包络谱中提取故障频率特征。结果表明,利用此方法对实测信号进行处理,成功降噪、提取齿轮箱故障特征,并且比利用经验模态分解方法降噪效果更好,提取的故障特征更加明显。
基于改进CEEMDAN和t-SNE的故障特征提取方法
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。
基于遗传算法和支持矢量机参数优化的制冷机组故障检测与诊断研究
针对制冷机组故障诊断中特征多、诊断准确率低的特点,提出一种复合诊断模型,利用遗传算法搜索特征空间,与带参数优化的支持矢量机(Support vector machine,SVM)结合,同时进行故障特征提取和模型训练。用该模型研究7种典型的制冷机组故障,从64个原始特征中筛选出8个与试验辅助系统关系甚微、均十分靠近核心制冷循环的特征,作为故障指示特征,总体诊断准确率从96.95%提高到99.53%,测试时间下降70%以上。用命中率和虚警率评价模型对各故障的诊断性能,所提复合模型除个别故障外,均优于无特征提取及带主元分析特征提取的SVM模型。复合模型在制冷机组故障诊断中有良好的应用前景。
基于EMD和AR模型的电磁换向阀故障特征提取研究
针对经验模态分解(EMD)方法存在的分解不完全问题,提出了一种改进EMD算法。该算法采用分段幂函数插值法代替原EMD算法中的三次样条插值法来生成包络线,对比实验表明了改进算法的优越性。结合时间序列分析中的AR模型,提出了一种基于EMD和AR模型的故障特征提取方法,将其应用到电磁换向阀的故障特征提取中,实验结果表明,该方法能够正确有效地提取电磁换向阀的故障特征。
基于MKurt-MOMEDA和Teager能量算子的柔性薄壁轴承的故障特征提取方法
与普通滚动轴承相比,柔性薄壁轴承存在背景冲击载荷,使得故障特征提取难度大。针对这一问题,提出基于MKurt-MOMEDA和Teager能量算子的柔性薄壁轴承故障特征提取方法。利用多点峭度谱(MKurt)对原始故障信号进行分析,确定柔性薄壁轴承故障周期,然后通过多点最优最小熵解卷积(MOMEDA)处理,再经Teager能量算子增强,最终提取柔性薄壁轴承外圈与内圈的故障特征频率,并与单一的MOMEDA算法、基于MKurt-MCKD与Teager能量算子故障特征提取方法进行了对比,证明了该方法明显增强了故障特征频率的幅值,为柔性薄壁轴承故障特征提取提供了参考。
基于ITD与稀疏编码收缩的滚动轴承故障特征提取方法
针对滚动轴承早期故障信号具有周期性冲击的特点和被强噪声淹没而难以提取的问题,提出了一种基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)与稀疏编码收缩(Sparse Coding Shrinkage,SCS)集成的轴承故障特征提取方法(命名为ITD-SCS)。ITD能自适应地将振动信号分解成若干固有旋转分量(Proper Rotation,PR),选择有效的PR分量突显信号的冲击特征。进一步采用奇异值分解(Singular Value Decomposition,SVD)对每一有效PR实施滤噪作为SCS的前置滤噪单元以提高信号的稀疏性。最后,通过SCS利用极大似然估计方法提取合成信号中的冲击特征。将ITD-SCS应用于轴承内圈故障仿真信号和外圈实际故障振动信号的实验结果表明,ITD-SCS能有效提取强背景噪声下的轴承故障信号的冲击特征。
基于ICEEMDAN和小波阈值的滚动轴承故障特征提取方法
[目的]针对滚动轴承故障信号非线性、非平稳特征导致的故障特征频率难以提取的问题,提出了一种基于改进的带有自适应白噪声的完全集合经验模态分解(ICEEMDAN)和小波阈值降噪的滚动轴承故障特征提取方法。[方法]首先用小波阈值降噪对故障信号进行预处理,然后利用ICEEMDAN对降噪后的信号进行模态分解,产生一系列的固有模态函数(IMF),并根据互相关系数法提取与原信号相关的模态分量,作各层模态分量的包络谱图,提取滚动轴承的故障特征频率。[结果]通过仿真试验与滚动轴承故障试验分析,并将其与集合经验模态分解(EEMD)处理的进行比较,基于ICEEMDAN方法分解后的包络谱幅值更加明显。[结论]本研究提出的方法能精确地提取滚动轴承的故障特征频率。
Morlet小波在数控机床预测中的应用研究
针对故障早期状态信号的微弱与包含脉冲突变成分对故障信号采集、去噪、预测等带来的极大挑战,分析了Morlet小波变换的滤波特性及其时频分辨率,提出了基于参数优化的Morlet小波变化的故障特征提取办法。利用最小Shannon熵方法和奇异值分解的周期检测方法分别对Morlet小波的形状参数口和尺度因子Ⅱ进行优化。最终选择了最优Morlet小波作为滤波内核,对轴承早期状态进行震动检测与分析,从而完成对数控机床主轴轴承的早期状态监测与故障预测。仿真试验和实际应用的结果表明,实际f=232.7Hz,接近故障通过频235.6Hz,推测轴承外圈出现性能下降,完成故障预测。该研究有助于对机械突变故障信号的微弱信号检测和提取,对数控装备的故障诊断、预测及未来故障注入,BIT有重要研究意义。
MCKD最佳故障周期搜索的齿轮箱故障特征提取
针对最小解熵解卷积( Minimum entropy deconvolution, MED)算法易受强噪声和野值的影响,引出了最大相关峭度解卷积( Maximum correlated kurtosis deconvolution, MCKD) 的齿轮箱故障特征提取方法,克服了MED算法的不足。然而凭先验信息选取的故障周期,可能导致MCKD解卷积效果很差,因此提出了MCKD算法的最佳故障周期搜索思路,即在合适的滤波器阶数£下,最佳故障周期的搜索可以限定于理论计算周期左右的某一范围内,使不同步距肘关于最佳周期的最大相关峭度达到全局最优,以确保了MCKD算法具有良好的解卷积效果。断齿与局部断齿故障特征提取试验结果佐证了最佳故障周期搜索思路的可行性及其效果。