基于小波降噪-支持矢量机的锂离子电池剩余使用寿命预测模型
针对锂电池充放电数据中夹杂噪声从而影响剩余使用寿命预测的问题,首先基于多分辨率的小波降噪方法,提出了锂电池充放电曲线降噪方法。然后采用支持矢量机回归方法建立了基于降噪数据的支持矢量机预测模型。最后用实验的方法采集锂电池容量保持率-充放电次数数据,对数据进行降噪并应用支持矢量机回归方法对其进行了寿命预测。结果显示基于降噪数据建立的支持矢量机回归模型预测性能优于基于原始数据建立的支持矢量机回归模型的预测性能,该方法预测结果与实际实验数据相对偏差在2.1%以内。
基于遗传算法和支持矢量机参数优化的制冷机组故障检测与诊断研究
针对制冷机组故障诊断中特征多、诊断准确率低的特点,提出一种复合诊断模型,利用遗传算法搜索特征空间,与带参数优化的支持矢量机(Support vector machine,SVM)结合,同时进行故障特征提取和模型训练。用该模型研究7种典型的制冷机组故障,从64个原始特征中筛选出8个与试验辅助系统关系甚微、均十分靠近核心制冷循环的特征,作为故障指示特征,总体诊断准确率从96.95%提高到99.53%,测试时间下降70%以上。用命中率和虚警率评价模型对各故障的诊断性能,所提复合模型除个别故障外,均优于无特征提取及带主元分析特征提取的SVM模型。复合模型在制冷机组故障诊断中有良好的应用前景。
-
共1页/2条