头部外形对无人机气动/隐身性能影响
为研究头部形状对无人机气动/隐身性能的影响,建立了头部外形改进前后的分析模型。基于FLUENT和物理光学法,研究了不同状态下的气动/隐身性能影响,提出气动性能影响分析的相对变化率概念。结果表明,头部外形改进可明显提高无人机气动性能,迎角4°时,升力系数相对增加率、阻力系数相对减小率、升阻比相对增加率分别为0.2258%,5.505%,6.065%;头部外形改进后,机身下方具有更大面积的高压区而其头部高压区相对较小,增加了升力,减小了阻力;头部外形改进对散射曲线分布影响不大,前向角域RCS曲线向内收缩较大,隐身性能提高,头部外形改进在频率和俯仰角变化时均有隐身性能提升效果,频率增加时,前向角域降低幅值最大可达6.6370 dB,俯仰角变化时可达11.4577 dB;头部外形曲面融合技术可有效提高无人机气动/隐身性能。
基于MATLAB的翼型的升力系数和气动中心计算
本文主要通过用Matlab建立翼型的升力系数和气动中心计算程序,并通过与Profili翼型数据库和已有实验翼型数据进行分析对比,验证本程序计算的可靠性和准确性。之后,通过使用该程序预测国内某公司新研发的无人直升机SUV翼型的升力系数和压力中心位置。
网格对翼型气动性能数值模拟的影响
翼型的气动性能数值模拟是翼型气动性能分析和气动优化设计的重要基础。研究表明翼型气动力系数和流场的计算精度受计算网格的影响很大。针对网格划分方法,运用流体力学软件Fluent进行翼型的气动性能数值模拟,研究对翼型流场及气动特性计算结果影响显著的计算网格关键参数。并进行进一步研究,得到具体因素对升力系数计算值准确性的具体影响。
新型双机身鸭式布局无人机气动特性
优化载重性能的气动布局设计是当前无人机研究重要方向,为提高物资运载能力和结构性能,基于连接翼、双机身、鸭式布局设计,提出一种新型双机身鸭式布局无人机,采用FLUENT详细研究了两种飞行速度下的升阻特性、压力云图、涡量分布等。研究结果表明,双机身鸭式布局无人机具有较高的升阻性能,速度提高时,升力系数增加而阻力系数减小,速度由30 m/s增加到60 m/s时,最大升力系数增加7.6%,升阻比增加4.8%;从表面压力云图看,升力主要贡献为前机翼、鸭翼和后机翼,失速迎角前后,后机翼未受前机翼和鸭翼气流干扰,提高了无人机的失速特性;巡航迎角状态的涡量较弱,仅在翼梢及部件连接处出现,失速迎角前后,翼梢、部件连接处涡系增强,且产生了干扰,机翼表面趋于分离。
飞行型绳牵引并联机器人气动特性计算与分析
为研究飞行型绳牵引并联机器人的气动力学特性。对并联机器人进行了三维模型的建立,采用流体力学分析软件Fluent对模型计算域进行网格划分和边界条件设置;研究了不同攻角和速度条件下升力系数、阻力系数和俯仰力矩系数等气动特性。结果表明:在给定飞行速度时,升力系数、阻力系数和俯仰力矩系数曲线都具有收敛性以及表面压力分布的均匀性。飞行速度较低时,阻力系数随攻角增大而缓慢增大;升力系数随攻角增大而正比增大。飞行速度较高时,阻力系数在攻角为0°~12°时随飞行速度正比增大,飞行速度增大到一定值后,不同速度下的阻力系数差别不大。升力系数在攻角为0°~8°时正比增大,在攻角为8°~16°时,随攻角增大而减小。俯仰力矩系数受到攻角和飞行速度的影响。
两自由度扑翼飞行器气动性能研究
以所研制的两自由度扑翼飞行器为研究对象,将飞行器扑动角和扭转角变化曲线拟合后写入用户自定义功能(UDF)程序耦合到Fluent流体求解器中,分析扑翼运动时产生的平均升力系数、推力系数和能量系数,并将分析结果与单自由度扑翼飞行器进行对比。结果表明:两自由度扑翼的平均升力系数比单自由度扑翼提高了1.88倍,平均推力系数提高了1.75倍。同时,两自由度扑翼平均能量系数降低了27.5%,具有更好的举升效率和推进效率,说明所设计的两自由度扑翼飞行器能产生足够飞行的升力,比传统的单自由度扑翼飞行器具有更好的气动性能。
风力机叶片翼型钝尾缘改型新方法及气动性能分析研究
为了研究翼型尾缘不同改型方式对其气动性能的影响,文章采用尾缘对称加厚法和一种新方法对翼型尾缘进行改型,利用二维RANS方程计算两种翼型的气动性能。在其他条件不变的情况下,尾缘对称加厚厚度在1%~7%内变化,采用尾缘弧形加厚的翼型修改位置在弦向90%~98%内变化。选用具有实验数据的DU93-W-210翼型做气动性能验证。计算结果表明:尾缘对称加厚对升力系数有一定的影响,但对阻力的影响更大;采用翼型尾缘弧形加厚法改型的翼型的升力系数有较大的提升,阻力也略大于原始翼型,该方法改型的翼型的气动性能要优于对称加厚的翼型。
龙脊风帆模型气动特性风洞实验
通过风洞模型实验,利用六分量高频底座天平技术,测量了称为龙脊风帆的一种单帆模型在均匀来流中各个风向角和俯仰角下的时均升力系数和时均阻力系数以及脉动升力系数和脉动阻力系数,可为工程中类似帆形结构的设计和受力计算提供参考.
Gurney襟翼对风力机叶片翼型气动特性影响的数值模拟
首先基于湍流模型对数值计算结果的影响分别采用Spalart-Allmaras(S-A)和SST k-ω两种湍流模型对NA-CA0015翼型原型进行数值模拟对比后选用了更为合适本算例的S-A湍流模型。然后对添加不同高度Gurney襟翼的NACA0015翼型改型进行数值模拟高度分别为1%c、2%c和4%c(c为翼型弦长)厚度为2mm。结果表明带有Gur-ney襟翼的翼型升力系数及升阻比均比原型有显著增加并且明显改善了压力面和吸力面压力分布在襟翼高度为2%翼型弦长时可达到稳态下最佳升阻比的输出效果。











