压印工作台的纳米级自找准定位研究
针对分步压印光刻工艺超高精度的对准要求,论述了一套由光栅、驱动器及激光干涉仪构成的闭环超高精度自对准定位系统.为了消除外界干扰引起的激光干涉仪误差对整个系统精度的影响,系统采用粗精两组光栅和相应两组光强传感器来实现工作台三维位置度的检测. 驱动环节采用宏微两级,相对于粗精两组光栅检测进行驱动,实现了分步式压印光刻的多点定位找准和多层压印的对准要求.为了提高在驱动过程中的定位精度和抗干扰能力,系统采用了精确模型匹配(EMM)算法,最终实现了在压印光刻工艺中,步进精度小于10 nm、多层压印重复对准精度小于20 nm的超高定位精度要求,使系统的整体定位找准精度控制在8 nm以内.
基于微压印成形的三维微电子机械系统制造新工艺
针对目前微电子机械系统(MEMS)制造中存在的三维加工能力不足的问题,将压印光刻技术和分层制造原理相结合,研究了三维MEMS制造的新工艺.采用视频图像原理构建了多层压印的对正系统,对正精度达到2 μm.通过降低黏度和固化收缩率,兼顾弹性和固化速度,开发了适用于微压印工艺的高分辨率抗蚀剂材料,并进行了匀胶、压印和脱模工艺的优化实验.通过原子力显微镜对压印结果进行了分析,分析结果表明,图形从模具到抗蚀剂的转移误差小于8%,具有制作复杂微结构的能力,同时也为MEMS的制作提供了一种高效低成本的新方法.
三自由度精密定位工作台的设计与运动学分析
针对精密柔性工作台多自由度高精度运动的需求,设计了一种采用柔性并联构型和压电陶瓷驱动的三自由度定位平台,通过建立的伪刚体模型进行运动学正解分析,并引入修正系数消除长杆柔性及柔性铰链中心偏移对工作台位移输出的影响,进一步提高了所建数学模型的精确度.利用有限元分析工具仿真了所设计的定位工作台的性能,确定了该工作台的修正系数矩阵,最终仿真试验验证了所建运动学模型的正确性.
-
共1页/3条