前置超光谱成像变焦系统的设计
设计了一种前置超光谱成像变焦系统,其工作谱段在400~1 000 nm,F数为3.5~5.6,在焦距28 mm和80 mm处的全视场分别为7.88°和2.76°.前置超光谱成像变焦系统与传统变焦系统主要有两点不同第一、由于该超光谱系统应用声光可调滤光器元件分光,更加关心分光后各个谱段下系统的整体传函情况,所以需要进行逐一离散评价;第二、由于实际应用中前置系统与后续成像模块综合应用达到总体变焦的目的,两个系统的传函在系统整体传函中均具有一定的贡献量,所以对前置超光谱成像变焦系统的评价需要综合考虑系统对后续成像模块传函要求的合理化及整体传函受人眼视觉阈约束的影响,从而对前置超光谱变焦系统的像质评价指标进行了具体分析.根据物像交换原则对系统的初始结构进行了计算,并应用ZEMAX软件对系统进行了优化设计,设计结果表明,系统在各个焦距位置...
基于等效节点的子孔径拼接系统公差分析
在子孔径拼接系统中,各子孔径之间的倾斜与位移对整个系统的成像质量有直接影响.本文应用动态光学理论中等效节点概念,根据各个子孔径倾斜及轴向与垂轴位移位移时等效节点也将发生相应移动的原理,利用拼接元件形成像点的位移引起的各个子镜形成像点叠加误差形成的弥散圆尺寸变化之间的关系,简化了子孔径倾斜与位移对拼接系统像质影响的分析与计算.通过在子孔径拼接原理样机结构设计与公差分析中的应用,得出原理样机的倾斜公差为4μrad,位移公差为6μm,使原理样机的子孔径装配调整得到了有效控制.
子孔径布局对拼接光学系统像质的影响
由衍射理论模型出发,分析了子孔径布局对光学系统点扩散函数的影响,从而进行傅里叶变换计算出其对光学系统光学传递函数的影响;并由光学设计软件内嵌程序将子孔径布局实际地加入到设计的光学系统中,分析各种不同子孔径布局对光学系统像质的影响.通过由衍射理论出发的计算结果与设计软件内嵌程序的模拟仿真结果的对比,软件内嵌程序的模拟仿真结果得以验证.针对子孔径布局对具有相同相对孔径光学系统的影响进行了仿真计算,对与子孔径拼接原理样机具有相同相对孔径和中心遮拦比的反射式光学系统,针对相同孔径布局对其光学传递函数的影响进行了实际测试,通过仿真计算结果与测试结果的对比分析表明,孔径布局对具有相同相对孔径拼接光学系统的光学传递函数影响趋势一致的结论,从而为子孔径拼接原理样机研究的实用性及像质检测提...
基于环形衍射理论的反射式光学系统研究
基于环形衍射理论,对像面光强与光学传递函数进行了计算仿真.编制了可以嵌入到光学设计软件ZEMAX的环形孔径模拟程序,对中心遮拦的像质影响进行了模拟分析.通过理论计算仿真与软件模拟结果对比发现二者结果吻合,验证了嵌入程序的正确性与可行性,为反射式光学系统像质评价提供了更为客观与全面的评价依据.通过模拟结果得出存在中心遮拦光学系统点扩散函数次峰增强,中频区域光学传递函数下降.分别对不同遮拦比像质进行模拟,结果显示对于遮拦比小于30%的系统,遮拦对像质影响基本可以忽略,但当遮拦比增大到40%时,光学传递函数中频开始下降较为明显,为遮拦比的合理选择提供了依据.
改进型卡塞格林光学系统的设计
普通的卡塞格林光学系统,其主次镜分别由抛物面和双曲面组合而成,非球面镜的加工难度大、成本高,针对这些特点对卡塞格林光学系统进行了改进。改进型的卡塞格林光学系统与传统的卡塞格林光学系统对比具有加工难度小、成本低等特点,通过在系统最前面附加前校正组,使得主次镜可以由球面面型实现,通过在像面前设置后校正组使视场也得到了提高,与传统的卡塞格林光学系统20'相比,它的视场可以拓宽到1.3°。系统设计结果通过传递函数与点列图的分析与衍射极限非常接近,为中等口径卡塞格林光学系统的设计提供了一个新的思考方法。
大口径反射光学系统的支撑结构设计
给出了卡氏系统(卡塞格林系统)的支撑结构设计.大口径反射镜的面形精度与支撑结构的合理与否紧密相关,文中给出了主反射镜的的支撑方案,经理论和有限元分析,此方案主反射镜的变形量最小.在装调过程中,次反射镜支撑结构能有效地调节主反射镜与次反射镜的位置关系.在工作过程中,卡式系统主反射镜与次反射镜的距离要求非常严格,采用了殷钢杆拉顶的方法保证其位置精度.
-
共1页/6条