水液压集成阀块机器人激光熔覆仿真系统设计
为了解决水液压系统中元器件因采用传统减材方式生产而带来的体积大、质量重、集成化程度低及压力损失严重等问题,提出采用虚拟仿真系统对其进行增材制造成型研究。该机器人激光熔覆仿真系统以Robotstudio为依托,采用六轴机器人为平台,配备变位机与可定位工作台,可实现各类复杂零部件的虚拟仿真;通过虚拟控制器系统的设计与程序调试,可实现在仿真系统中对激光熔覆宽高比、熔覆速度等工艺参数的调试;通过对垂直相交孔道模型的仿真与实际加工,验证了该虚拟仿真系统的可靠性与真实性。另外,该虚拟仿真系统可实现多对象选择及多任务运行、工艺规划与模拟、程序调试与仿真等全过程功能。
基于C8051F脉宽调制(PWM)的气动比例调压阀的开发
介绍了气动比例调压阀的组成、工作原理及控制系统。该气动比例调压阀是由先导式调压阀、高速开关阀、压力传感器、以C8051020单片机为核心的控制电路和显示电路组成的闭环控制系统。该系统通过软件编程输出脉宽调制(PWM)信号来控制两个气动高速开关阀,对气动调压阀先导腔压力进行控制,以实现对调压阀出口压力进行比例控制的目的。通过实验表明系统具有良好的控制性能和实用性。
基于PWM方式的气动调压阀的设计
将PIC16F877单片机应用于PWM气动阀的调压控制。利用其AD模块 ,CCP模块及SPI模块实现对系统的脉宽调制和闭环控制。介绍系统的组成及其脉宽调制原理。
气动轻量型机械臂伺服控制系统和碰撞检测方法研究
针对服务型机器人对系统的柔性、安全性提出的高要求,开展了气压驱动轻量型机械臂的伺服控制系统和碰撞检测方法研究。设计制作了二自由度轻量型机械臂样机,建立了机械臂的运动学和动力学方程,对系统的摩擦力矩进行了辨识。采用PID与加速度反馈和摩擦力前馈补偿控制策略,解决了机械臂关节旋转过程中的低速爬行问题。研究了基于被动柔顺控制和动力学方程的碰撞检测方法,实现了机械臂的防碰撞功能,提高了系统的安全性。通过对实验样机的试验测试,验证了机械臂的位置伺服控制策略和碰撞检测方法的有效性。
气动扇形柔性关节多指灵巧仿人机械手
为了满足服务型机器人对人机交互动作柔软性、安全性的高要求,基于仿生学理论提出了一种气压驱动扇形柔性关节,并将其用于多指灵巧仿人机械手的构建。采用柔性关节驱动和刚性手部骨骼相结合的设计理念,兼顾手部刚度与柔性。通过关节角度的检测和供气压力的调节,实现手指关节弯曲角度和手指抓握力的连续控制。描述了扇形柔性关节的工作原理和结构设计特点,以及手部整体结构的设计,并对机械手抓握动作和功能进行了试验分析。试验结果表明:柔性多指灵巧仿人机械手能够完成各种手势以及对球状、圆柱状和卡片状等物体的抓取。
气动上肢康复机器人伺服控制和运动规划研究
针对中风导致的人体上肢运动功能障碍,提出了一种气动上肢康复训练机器人系统,并研制了二自由度的机器人样机。以带位置检测传感器的摆动气缸作为机器人的关节驱动模块,用比例调压阀作为控制元件,采用PD+速度前馈的柔顺控制策略,对机器人的关节旋转角度实施精准控制。同时,设计了机器人的复合运动轨迹规划,以取水和擦玻璃动作为任务,带动手臂进行康复训练实验。通过样机的测试,验证了控制策略的有效性和康复轨迹规划的可行性。
一种用于主从控制的阻尼力可调关节模块机构设计
现有的力觉反馈设备,大多将驱动力直接作用于操作人员,具有操纵安全性和柔顺性上的缺陷。针对这个问题,设计了一种用于主从控制的阻尼力可调关节模块机构。该关节模块机构基于制动器原理设计,为被动力反馈系统,安全性好。驱动器使用一对膜片式气缸,采用驱动力转换为摩擦力方式,间接达到转动阻尼力调节的目的。文中论述了阻尼力可调关节模块的设计方案、阻尼力调控原理,并对制作的样机进行实验和数据分析。经过实验证明,阻尼力可调关节模块机构响应速度快、运动可靠、控制精度高,达到了主从控制的使用要求。
电解槽用新型节能打壳气缸系统设计
打壳气缸作为电解铝生产过程中必不可少的重要设备,同时也是电解铝行业中高耗能的部分。目前,打壳气缸气动系统存在两个问题需要解决,一是工作环境温度高、磁场强,易造成电磁换向阀的工作稳定性变差;二是待工期间的供气压力高,造成打壳气缸因密封不良引起的能源泄漏加剧。为提高打壳气缸系统工作的稳定性和减少压缩空气的消耗量,论文采用带延时环节的纯气动回路替代电磁力换向,通过减少电磁铁的数量来提高气动系统工作的稳定性;采用减压模块,降低待工期间的供气压力来减少压缩空气的泄漏量。经实验证明该新型打壳气缸气动系统,提高了系统工作的稳定性,明显地降低了系统的耗气量。
新型高速开关阀单片机PWM控制电路的设计及应用
主要介绍PWM高速开关阀控制电路的结构、工作原理及其具体的应用。经过试验表明,该控制系统利用其驱动电路及单片机的PWM等模块实现了高速开关阀的快开、快闭等特性。该系统具有开闭效果好、功耗低、PWM信号频率和占空比均可调节、控制信号频率适应范围广等优点。该新型PWM高速开关阀控制系统的开闭频率能达到毫秒级,能够精确地控制并在LCD显示执行元件的压力,实验结果表明该系统动态响应特性良好,在电气液控制系统中有广泛的使用价值。
三类伺服阀控制电液负载模拟器的研究
建立了三类伺服阀(流量伺服阀、压力伺服阀、流量-压力伺服阀控制的电液负载模拟器数学模型,分析了它们加载和克服多余力矩的机理,并进行了仿真和实验研究,为设计和选用被动式电液伺服加载系统中的伺服阀,更好地克服多余力矩以提高系统性能提供了依据。