干气密封补偿环O形圈的变形与应力分布规律
采用有限元分析软件ANSYS建立干气密封补偿环O形橡胶密封圈二维轴对称模型,对其在不同压缩率与介质压力下的变形、VOn Mises应力及密封面处接触压力、接触摩擦应力分布规律进行探讨,确定O性橡胶密封圈易失效位置;分析压缩率和介质压力对其最大VOn Mises应力、最大接触压力、最大接触摩擦应力的影响.分析结果表明O形圈密封最大VOn Mises应力、密封面最大接触压力、最大接触摩擦应力随介质压力的增大而增大,在中低压下提高O形圈的压缩率既能提高密封圈的密封性能,也不影响补偿环的追随性.为干气密封补偿环上的O形密封圈结构设计及选型提供参考.
柱面螺旋槽干气密封流动场数值计算与试验验证
针对柱面螺旋槽干气密封中的单列螺旋槽结构特点,建立螺旋槽浮环气膜密封的数学分析模型。基于中心差分法和Newton-Raphson迭代法,进行压力控制雷诺方程和气膜厚度方程的求解,得到压力和气膜厚度分布及不同操作参数下柱面单列螺旋槽气膜的泄漏量,并分析工况参数对柱面螺旋槽稳态性能的影响。结果表明泄漏量是随着偏心率和压力的增加而升高;当偏心率一定时,转速的增加,导致泄漏量下降;当转速一定时,压力的上升导致泄漏量的急剧上升,近乎线性分布。试验结果与理论分析结果相吻合,验证了理论模型和计算方法的正确性。
叶轮转子-轴承-干气密封系统模态分析及谐响应分析
以“叶轮转子-轴承-干气密封”系统的动态特性为研究对象,利用软件ANSYS建立有限元模型,对系统进行满载条件下模态分析,得到该系统各阶固有频率和振型,对该系统进行空载条件下模态分析.对比上述两种固有频率发现工况下干气密封系统及叶轮转子所受的力降低了系统固有频率.以系统不平衡量为体载荷,通过谐响应分析方法得到系统的稳态不平衡响应曲线.
DLC薄膜微织构表面对干气密封环摩擦性能的影响
在干摩擦情况下,研究干气密封环类金钢石(DLC)薄膜织构表面的摩擦性能,并揭示织构表面对界面摩擦学行为的作用机制。应用HDM20型端面摩擦磨损试验机测试了摩擦系数随凹坑直径、面密度的变化情况;用ST400三维非接触式表面形貌仪进行磨损前后表面形貌测量分析。研究结果表明:微织构化的DLC薄膜端面具有很低摩擦系数;在工况一致的条件下摩擦系数随着凹坑直径的增加而减小,随着面密度的增加而增加,但是摩擦系数变化的振幅减小。研究成果为干气密封环端面的摩擦学研究和端面微织构的优化提供了一定依据。
基于叶轮转子系统下的干气密封轴向振动分析
为探究基于叶轮转子系统下干气密封轴向振动特性,基于干气密封结构特性,建立叶轮转子-轴承-干气密封系统轴向振动模型,采用待定系数法进行求解,推导得出静环轴向振动幅值表达式;建立叶轮转子-轴承-干气密封系统几何模型,运用ANSYS Workbench软件进行模拟仿真计算,分析气膜刚度和激振力对轴向振动的影响。结果表明:气膜刚度对动、静环振动幅值的影响不大;动、静环振动频率相同、振动幅值相同,说明动、静环的追随性高,其间隙稳定,从而保证干气密封的稳定运行;动、静环位振动幅值与激振力成正比关系,说明激振力严重影响干气密封的稳定性,为提高干气密封的稳定性,应平衡好叶轮的轴向激振力。
基于热流固耦合密封环-液膜多体结构的性能分析
机械密封的性能对海洋核心设备海底混输泵的热控效率以及稳定运行有着重要影响。针对混输泵工作状态与机械密封服役环境,建立密封环-液膜多体结构三维模型,考虑热效应、力效应和流体效应等多场协同作用,利用热流固耦合数值仿真技术,研究密封环-液膜多体结构在模拟实际工况下的性能变化规律,得到密封环-液膜多体结构在不同工况下的润滑特性、力学特性以及温度特性。结果表明:在密封环-液膜的多体结构中,密封环最大变形量和最高温度都出现在螺旋槽区域;随转速和压力的增加密封开启力和泄漏量增加,但转速的影响明显大于压力;压力对应力的影响明显大于转速,特别是在压力超过6 MPa后密封端面的接触压力较为不均匀;由于对流换热和气流黏性剪切影响,转速对密封端面温度影响大于压力,尤其在500 r/min低转速区域,密封环-液膜结构的温度突破了...
基于转子-轴承-干气密封系统静环振动分析
以转子-轴承-干气密封系统为研究对象,综合考虑轴承油膜力及外界瞬时激振力对干气密封系统稳定性的影响,建立转子-轴承-干气密封系统轴向振动模型,并利用近似解析法求解微尺度下的非线性雷诺方程,同时耦合振动方程推导得出气膜轴向刚度及轴向阻尼的表达式并编程计算.通过分析不同螺旋槽数响应下时间历程图和相轨图,探寻系统轴向振动特性最优螺旋槽数范围,对比分析干气密封静环-气膜系统和转子-轴承-干气密封系统在实际工况下干气密封槽型参数的稳定范围,为干气密封非线性稳定性研究及设计提供理论指导.
新型螺旋槽干气密封流固耦合分析
传统螺旋槽在背风口处有一处明显的低压区,影响螺旋槽的密封性能。为提高传统螺旋槽的密封性能,在传统螺旋槽的基础上提出一种新型螺旋槽结构。该槽型在传统螺旋槽的背风处一侧并列了一个槽根半径不同短槽,且两槽的槽深相等,形成一个槽根较长的新型螺旋槽结构。通过建立传统螺旋槽与新型螺旋槽的几何模型,利用ANSYS仿真软件对2种槽型进行数值模拟。结果表明,新型螺旋槽的开启力、泄漏量及刚度等干气密封性能均优于传统螺旋槽。对流固耦合下的密封环进行应力、变形分析,对比2种槽型密封环在相同操作参数下的流固耦合应力、变形等的差异。计算结果表明:随着转速与入口压力的增加,2种槽型的动、静环最大应力、变形量均呈现上升趋势,且动环的最大应力、变形量始终大于静环,新型螺旋槽的最大应力、变形量始终大于传统螺旋槽。
双槽阶梯槽干气密封性能研究
针对干气密封系统在高转速工况下密封性能差、泄漏量大的问题,提出一种双槽阶梯槽端面密封结构。采用CFD对比分析不同压力、转速下单螺旋槽、双槽阶梯槽、阶梯槽3种槽型的密封性能,探讨槽深、螺旋角对密封性能的影响,得出了双槽阶梯槽型优化的结构参数。结果表明:双槽阶梯槽在降低泄漏量和提高综合密封性能上要优于阶梯槽和单螺旋槽;在槽深为6μm、螺旋角为18°时双槽阶梯槽端面密封的刚漏比最大、泄漏量最低;与普通螺旋槽干气密封性能相比,在高速低压工况下,双槽阶梯槽干气密封承载力虽稍有下降,但刚漏比提升了21.74%、泄漏量降低了27.45%。
湍流效应对高速机械密封端面型槽冷却性能影响分析
高速工况下密封间隙内流体黏性生热严重且流动行为复杂,流体流动状态是影响跨尺度间隙流固传热过程和温度分布的关键因素之一,应用ANSYS Fluent软件在湍流与层流计算模型下建立了环形槽与螺旋槽复合式端面构型(ASG)的三维热流体动力润滑(THD)模型,对比了两模型下螺旋槽的冷却性能差异与环形槽的降温作用,以此揭示了流动状态对端面型槽冷却作用的影响机理,分析了型槽几何参数对两模型下温度场及密封性能的影响规律。结果表明:湍流模型下深螺旋槽内存在的大片死流体区阻碍了槽口冷流体进入到槽根部,致使螺旋槽对间隙内高温流体的冷却作用衰减;层流模型下深螺旋槽内充满更多的冷流体,冷却作用较强。内径侧环形槽在两模型下均具有显著的降温作用,且随槽深、槽宽的适当增加其降温作用得到强化;持续增加螺旋槽槽深并不能达到持续降温的目...