泵送大粘度液体的双腔并联压电泵设计与试验研究
为使双腔并联压电泵能够输送较大粘度的液体,设计了一种以5~7μm厚度铍青铜材料加工而成的薄片型轮式平板阀。在理论上分析了阀的过流特性,确定了影响通过阀体流量的因素,即阀自身的几何尺寸、作用在阀两侧的压力差及液体粘度对其影响,并以试验的方法确定了当阀片半径为3.25mm、阀孔半径为2.75mm时,双腔并联压电泵输出流量最好。分别以不同浓度的甘油水溶液作为试验液体,测试了在不同液体粘度、不同工作频率下双腔并联压电泵的输出流量。试验发现,随着液体粘度的增加,阀开启时的阻力增大,开启量变小,阀和压电振子之间振动相位差不断加大,截止性能变差,压电泵净输出量减少。在液体粘度μ=1.311mPa·s时,压电泵的最大输出流量可达1300mL/min,而当液体粘度μ=234.6mPa·s时,压电泵的最大输出流量仅为30 mL/min左右。试验...
压电双晶片和单晶片驱动下泵的输出性能研究
为从理论上获得压电泵在薄片型压电双晶片和单晶片(统称压电振子)驱动时的输出一流量关系,需要获得二者振动时产生的容积变化量。假设压电振子在周边固定约束条件下,应用弹性薄板的小挠度弯曲变形理论,推导了压电双晶片和单晶片振动时的容积变化方程,并根据方程对铜基板直径为35mm,压电陶瓷直径为29mm,基板和压电陶瓷厚度同时为0.2mm和0.3mm2种规格的压电单晶片和双晶片进行了振动容积计算。计算结果显示,相同基板和陶瓷厚度的双晶片振动产生的容积变化量是单晶片的2.3倍。将上诉压电振子应用到单腔压电泵上进行输送气体流量测试,获得的实际输出流量比在1.5~2倍之间,理论计算结果与试验测试结果比较接近。理论推导结果为比较双晶片和单晶片驱动下压电泵的输出能力提供了可靠依据。
不同容积比的双腔串联压电泵测试分析
为提高双腔串联压电泵的输出性能对泵的进口腔与出口腔的容积比进行了优化设计。分别设计了容积比为1.9、1.5、1.3三种串联压电泵样机并对样机进行了试验测试。试验结果显示采用增加容积比的方式可以提高双腔串联压电泵的输出流量但不能提高其输出压力;对每个不同腔体容积比的双腔串联压电泵在异步驱动和同步驱动下进行了输出性能测试测试结果显示当输送气体时两种驱动方式均有很好的流量输出且输出结果比较接近但仅有异相驱动时才能输出液体。分析结果为提高双腔串联压电泵的输出性能提供了很好的依据。
-
共1页/3条