大采高液压支架主供回液管路压损研究
液压支架主供回液管路的压损一般采用沿程压损和局部压损公式计算,但公式中阻尼系数多用经验值估算,精度有待商榷。对大采高液压支架主供回液管路压损进行了研究,分别建立了大采高液压支架软管与直通接头压力损失理论模型和AMESim仿真模型,搭建了大流量长管路压力损失试验系统,结果表明,软管长10m和1个直通接头在管内流速2.6m/s、5.1m/s和7.6m/s时,理论、仿真和试验之间的最大误差分别为9%、8%和2%,考虑温度对乳化液粘度的影响,理论与试验压损误差分别为5%、6.6%和1.7%。所得理论、仿真结果与试验结果较吻合,改进了计算液压支架接头压损的算法,这对于大采高液压支架主供回液管路设计与压损计算提供了参考数据。
液压支架上升回路的AMEsim建模和仿真
介绍了液压支架液压系统回路工作原理,以ZY12000/28/64型号为基础建立主要仿真参数,在AMESim环境下对液压支架上升工况的立柱和平衡缸液压回路进行建模和仿真,并对结果进行分析。仿真结果表明了所建模型的正确性和有效性,能正确反映液压支架上升工况的动态特性。
应用多参数融合与ELM的自动机故障诊断
考虑到自动机工作环境复杂,各部件相互作用时间短,冲击性强从而导致各种响应信号相互叠加,敏感特征参量难以确定的问题,提出了一种应用多参数融合与ELM相结合的自动机故障诊断方法。首先,对自动机故障信号计算广义分形维数,在此基础上提取盒维数、信息维数、关联维数作为故障特征参量;然后引入信息熵模型,对自动机故障信号提取功率谱熵、奇异谱熵、特征空间谱熵作为特征参量来描述信号状态在频域、时域、时频域的能量变化;最后将特征参量输入到极限学习机中(ELM)进行分类。实验结果表明多参数融合能全面准确地反映故障信息,极限学习机学习速度快、结构简单,具有很好的故障分类效果。
管路体积模量对液压支架立柱缸动态特性的影响
大采高液压支架的供液管路的工作压力为23-32.5MPa,通流直径为38-60mm,管路长度约1000-1500m,管路体积模量使供液管路具有压力明显、流量响应滞后现象,导致液压支架系统速度、位移动态响应差。以液压支架大通径高压供液管路为试验对象,当压力为5-25MPa时,管路体积模量值1300MPa,依据公式得到胶管体积模量约为恒定值2700MPa,与乳化液体积模量接近。建立了AMESim管路模型和液压支架系统模型。仿真结果表明,供液管路体积模量越小,立柱位移、速度和压力响应越慢;当管路体积模量为1300MPa时,立柱位移、速度和压力响应时间分别为0.1s,0.2s,0.05s,立柱缸响应滞后较明显
-
共1页/4条