碧波液压网 欢迎你,游客。 登录 注册

数控机床主轴的神经网络热评价模型研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
1.59 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

热误差作为影响机床加工精度的重要因素之一,严重制约着机床加工精度的提高。而主轴是数控机床的关键功能部件,对其进行热特性研究对提高机床的加工精度具有重要的意义。将同一类型、不同使用年限的机床主轴温度值和热变形值作为评价指标,建立数控机床主轴的神经网络热评价模型;针对BP神经网络易陷入局部最优值、收敛速度慢等问题,采用粒子群优化(PSO)算法优化加权朴素贝叶斯(WNB)的初始权值,获取权值全局最优解,构建了粒子群优化加权朴素贝叶斯机床主轴热评价模型,实现对机床主轴热特性的评价。MATLAB仿真结果表明:PSO-WNB模型精度为94.1%,收敛速度快,预测精度高,优于BP神经网络,为数控机床热特性评价提供了新思路。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论