碧波液压网 欢迎你,游客。 登录 注册

基于BP神经网络的转动架稳定性灵敏度分析

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
2.42 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
38

简介

液压导航网
转动架作为某型游乐设备的关键部件,其固有频率和屈曲强度直接关系着结构的稳定性。运用有限元软件ANSYS Workbench建立转动架的有限元模型,通过模态分析和谐响应分析得到对转动架振动影响最为显著的固有频率,通过屈曲稳定性分析得到转动架失稳时的屈曲特征值,并运用试验设计获得140个样本点。为探索各个设计参数对转动架固有频率和屈曲强度的灵敏度,运用MATLAB软件建立BP(back propagation,反向传播)神经网络数学模型并对样本点进行拟合,再通过Isight与MATLAB的集成应用,利用描述性蒙特卡洛抽样法对神经网络模型进行数值模拟。结果表明:对转动架稳定性影响较大的危险模态主要是第10至第12阶模态;对转动架危险模态频率影响较大的主要是肢杆壁厚度、肢杆截面长度和肢杆截面宽度,而对转动架屈曲稳定性影响较为明显的则是肢杆、腹杆和圆板的6个尺寸参数。研究结果表明,合理地改善对转动架稳定性影响较大的设计参数将有效地提升其稳定性和设计效率,这可为该结构的后续设计和优化提供一定的借鉴和参考。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论