简介
为了提高滚动轴承的故障特征提取可靠性,该文提出了一种基于自适应局部迭代滤波(Adaptive local iterative filtering,ALIF)和能量算子解调的滚动轴承故障特征提取的方法。该方法首先利用ALIF将轴承的故障振动信号分解为若干个本征模态函数(Intrinsic mode function,IMF)分量,然后对包含故障信息最多的分量进行能量算子解调,得到分量的包络谱来提取轴承的故障特征。仿真结果表明ALIF能够准确获取IMF分量,解决经验模式分解(Empirical mode decomposition,EMD)带来的模式混叠问题,结合能量算子解调方法能更好地凸显故障信号的包络谱特征,有效地提取轴承故障特征频率。
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。