碧波液压网 欢迎你,游客。 登录 注册

基于AGA-RBF算法的柴油机故障诊断研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
1.52 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对在柴油机故障诊断中径向基函数(Radial Basis Function,RBF)神经网络泛化能力不足的问题,提出一种基于AGA-RBF算法的柴油机故障诊断方法。在该方法中将自适应遗传算法(Adaptive Genetic Algorithm,AGA)和RBF神经网络有机地结合起来,利用自适应遗传算法对RBF神经网络的基函数宽度和中心进行优化,将优化后的RBF神经网络应用于柴油机故障诊断。通过实验仿真表明,该算法收敛速度快,改善了RBF神经网络的泛化能力,提高了故障诊断准确率,实用性强,易于工程实现。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论