碧波液压网 欢迎你,游客。 登录 注册

滚动轴承故障检测深度卷积稀疏自动编码器建模研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
2.34 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对机械设备故障诊断大多采用有监督学习提取故障特征,而有标签数据难以获取的现状,提出一种在稀疏自动编码器中嵌入卷积网络的深度神经网络。利用希尔伯特和傅里叶变换实现机械设备振动时间序列向Hilbert包络谱的转换,通过卷积网络中多组卷积核自动学习谱空间数据的不同特征,保证了特征提取的自动化、全面性和多样性,稀疏自动编码器搜索具有正交性数据特征的低维表示,并使得编码后的数据具有很强的聚类特性,实现设备的自动故障诊断。通过对滚动轴承振动信号进行分析实验,证明该方法在设备故障诊断中具有去标签化、自动化、鲁棒性等特点。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论