碧波液压网 欢迎你,游客。 登录 注册

变分模态分解与神经网络结合的轴承故障诊断

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
350KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
62

简介

液压导航网
故障信号特征提取的准确性是保证故障智能诊断识别率的关键因素。低信噪比情况下,故障诊断效果下降。变分模态分解方法(VMD)在信号分解精度和抗噪方面具有明显优势。在分析VMD抗噪性能的基础上,提出以VMD分解的各模态能量作为智能诊断特征信息,并与小波包的特征信息进行对比研究。将滚动轴承两种故障特征信息通过BP神经网络识别,用不同信噪比的加噪故障信号进行测试,结果表明,在低信噪比情况下基于VMD模态能量的故障特征更具有可识别性。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论