碧波液压网 欢迎你,游客。 登录 注册

基于EEMD小波阈值去噪和CS-BP神经网络的风电齿轮箱故障诊断

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.97 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对风电机组齿轮箱中齿面点蚀、齿轮磨损、断齿等故障的诊断问题,提出一种基于EEMD小波阈值去噪和布谷鸟算法优化BP神经网络的故障诊断方法。采用EEMD分解和小波阈值去噪方法对故障振动信号进行数据预处理,抑制原始振动信号中的噪声干扰。利用布谷鸟算法优化BP神经网络对预处理后的信号进行诊断。小波阈值能更好地对EEMD分解中的高频分量进行去噪处理,CS-BP神经网络具有准确的模式识别精度和出色的全局寻优能力。通过实例仿真表明,提出的故障诊断方法具有良好的诊断精度、速度和成功率,具有较高的应用价值。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论