基于BP神经网络和证据理论的离心压缩机喘振诊断方法 作者: 谢林 冯坤 张明 来源:机械设计与制造 日期:2024-09-28 人气: 关键词: BP神经网络 信息融合 离心压缩机 故障诊断 版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。 信息 资料大小 550KB 文件类型 PDF 语言 简体中文 资料等级 ☆☆☆☆☆ 下载次数 简介 离心压缩机是石油化工生产中的核心动力设备,然而运行过程中易发生喘振故障造成事故。对于喘振故障,传统方法采用时频特征分析方法诊断,而该方法通常在喘振发展到后期、信号特征明显的情况下才诊断出喘振故障。为解决该问题,提出基于BP神经网络和证据理论的诊断方法,该方法使用故障数据训练得到BP神经网络,进而对采集的数据进行初步诊断,再采用证据理论融合各初步诊断结果得出诊断结论。通过在离心压缩机实验台上模拟喘振故障,结果表明该方法能够准确诊断压缩机喘振故障,此外与传统方法相比,采用该方法能在喘振发生初期诊断出故障,从而进行调控避免喘振发展到后期,这对实现离心压缩机防喘具有重要意义。 进入下载地址列表 标签: 点赞 收藏 上一篇 下一篇 相关论文 发表评论 请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。 中立 好评 差评 用户名: 验证码: 匿名? 发表评论 最新评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。