碧波液压网 欢迎你,游客。 登录 注册

基于联想神经网络的轴承剩余使用寿命预测

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
700KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

为了提高现代制造业的可靠性和效率,根据轴承剩余使用寿命预测(RUL),提出了一种基于联想神经网络的轴承剩余寿命预测模型。该模型在17个轴承数据集上随机选出4个轴承的数据作为模型的验证集,剩下的13个轴承数据来训练集,并采用5折交叉验证将这13个轴承数据划分为训练集和测试集。在训练神经网络时,采用了学习率衰减机制,并对比学习率衰减机制与固定学习率的差异。试验结果表明,该模型相比LASSO、随机森林回归(RFR)、支持向量回归(SVR)、深度学习等方法在RMSE和MAE两个方面具有明显的提高。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论