碧波液压网 欢迎你,游客。 登录 注册

基于联想神经网络的轴承剩余使用寿命预测

作者: 郑凯 李少波 来源:机械设计与制造 日期: 2024-09-08 人气:146
基于联想神经网络的轴承剩余使用寿命预测
为了提高现代制造业的可靠性和效率,根据轴承剩余使用寿命预测(RUL),提出了一种基于联想神经网络的轴承剩余寿命预测模型。该模型在17个轴承数据集上随机选出4个轴承的数据作为模型的验证集,剩下的13个轴承数据来训练集,并采用5折交叉验证将这13个轴承数据划分为训练集和测试集。在训练神经网络时,采用了学习率衰减机制,并对比学习率衰减机制与固定学习率的差异。试验结果表明,该模型相比LASSO、随机森林回归(RFR)、支持向量回归(SVR)、深度学习等方法在RMSE和MAE两个方面具有明显的提高。

深度可分离卷积神经网络轴承剩余寿命预测

作者: 步伟顺 姚磊 唐苑寿 刘国威 来源:机械设计与制造 日期: 2024-07-27 人气:158
深度可分离卷积神经网络轴承剩余寿命预测
深度学习因其强大的学习能力使得数据驱动的轴承剩余寿命预测方法发展迅速,人工建立性能退化指标费时费力,缺少不同传感器数据之间相关性的考虑;宜采用一种新的深度可分卷积神经网络DSCNN(Deeply Separable Convolutional Neural Network),将多种传感器采集的监测数据作为DSCNN网络输入,基于可分离卷积和信息特征响应自动调节运算,构造具有残差连接功能可分离卷积构造块。通过叠加多个可分离的卷积构造块,从输入数据中自动学习高维表示。通过将学习到的信息输入到完全连接的输出层来估计RUL(Remaining Useful Life)。利用滚动轴承加速退化试验振动数据对所提出的DSCNN进行了验证。实验结果表明,所提出的DSCNN能够基于原始的多传感器数据提供准确的RUL预测结果,并且优于现有数据驱动预测方法。
    共1页/2条