碧波液压网 欢迎你,游客。 登录 注册

基于多尺度卷积神经网络的滚动轴承智能诊断算法

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
1.32 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
6

简介

液压导航网
近些年由于深度学习技术的介入,机械故障诊断算法也日新月异。但是现有的方法过于依赖大量数据支撑并缺乏较好的泛化能力。针对目前存在的两个问题,这里提出了一种基于多尺度卷积神经网络的全新算法(MSCNN)。该方法以轴承原始振动时序信号作为输入,为了实现预期效果,这里采取了如下三种解决思路;(1)模型使用具有一定重复率的样本数据,大幅扩充了样本数量;(2)引入多尺度卷积核进行特征提取;(3)模型根据振动信号的固有特征选择卷积核尺寸。MSCNN不仅能在少量数据下得到近乎100%的故障识别精度,还能够在不同数据集交叉中,表现出优秀的泛化性能。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论