基于CFD的汽车空气调节系统离心风机流场与气动噪声数值模拟
基于CFD分析软件Star CCM+,结合计算气动声学理论,对某汽车空气调节系统(HVAC)离心风机工作过程的流场和气动噪声进行数值模拟分析.采用Reynolds平均数值模拟(RANS)标准k-ε湍流模型模拟稳态流场,利用大涡模拟(LES)湍流模型和FW-H方程分析瞬态气动噪声,通过监测离心风机内部和外部布置点测得压力脉动,并由傅里叶变换得到监测点声压级频谱.结果表明,离心风机主要噪声是叶轮旋转产生的离散噪声(达98 d B),可适当增加叶片数,调整叶片间距,以减小离散噪声.本方法可为其他类型风机的气动噪声数值模拟提供一种有效的分析手段.
调节阀阀芯型线的优化设计与流阻分析
针对传统的调节阀阀芯型线设计无法有效减小压降的问题,采用正交多项式作最小二乘拟合的方法对型线进行优化,得到新的曲线方程,将该方程提取到AutoCAD中设计阀芯型线.数值模拟结果表明,新设计的阀芯型线的流阻系数比原来下降35%,且进出口压降减小,实现了节能的目的.
气动微流控芯片PDMS电磁微阀设计与性能研究
针对常规电磁阀和阀组结构复杂、尺寸巨大,很难与微流控芯片进行集成的问题,采用新型阀体材料高弹PDMS,设计了一种新型电磁微阀.通过Fluent软件嵌入UDF函数对典型驱动压力下不同阀口开度电磁微阀的静、动态流量特性进行数值仿真,并对开关和脉冲宽度调制(PWM)两种模式下电磁微阀流量特性进行了实验研究,结果表明:在驱动频率相等的情况下,电磁微阀流量与压差呈正比;当压差一定时,电磁微阀流量与驱动频率呈反比,电磁微阀平均流量与占空比呈正比;电磁微阀出口流量与阀口开度呈正比.所设计的电磁微阀流量控制精度高、封装成本低,能够提高微流控芯片的集成化程度和控制性能.
基于AMESim的多路阀结构参数对系统性能的影响研究
为了解决挖掘机工作过程中存在的换向冲击、流量滞环大、阀芯卡滞问题,基于负载敏感比例多路阀的工作原理,在比例减压阀和主阀之间通过增加阻尼孔以匹配主阀和先导阀的速度,并推导出比例减压阀控制主阀的数学模型,建立负载敏感比例多路阀的AMESim模型,验证其动态特性.仿真结果显示:随着黏性摩擦力的增大,系统的稳定性会增加,同时系统响应时间也会增加,因此黏性摩擦力不能设置过大,以5000 N·(m/s)为宜;在比例减压阀与主阀之间添加阻尼孔,能够提高多路阀的稳定性、减小系统压力冲击、提高元件使用寿命;主阀位移的振荡幅值会随着弹簧刚度的增加而增加,使系统的稳定性变差,因此弹簧刚度的设计不可过大,以30 000 N/m为宜;主阀阀芯质量对系统响应几乎没有影响,设计时考虑其强度和耐腐蚀性即可.
-
共1页/4条
-
共1页/4条