碧波液压网 欢迎你,游客。 登录 注册

基于EMD的灰色模型的疲劳剩余寿命预测方法研究

作者: 徐东 徐永成 陈循 李兴林 杨拥民 来源:振动工程学报 日期: 2023-09-20 人气:20
基于EMD的灰色模型的疲劳剩余寿命预测方法研究
工程上的振动信号多为非线性非平稳信号,为了利用工程振动信号预测机械产品的疲劳剩余寿命,提出改进的经验模态分解方法对振动信号进行分解,分离故障特征频率到某本征模态函数中,计算全寿命周期各阶段故障特征频率所在本征模态函数的均方根值、峭度等时域特征指标,将其作为刻画机械产品健康状态的退化特征量,形成退化特征量序列,根据经验设定机械产品完全失效对应的退化特征量阈值。用退化特征量序列训练灰色模型,然后用训练好的灰色模型预测退化特征量的变化趋势,判断不同退化特征量用于刻画机械产品退化过程的可行性,估计可用退化特征量达到退化特征量阈值的时间并据此预测机械产品的剩余疲劳寿命。通过6205深沟球轴承全寿命周期振动信号对其进行验证,结果表明,可用的退化特征量结合该方法可以有效地预测小型球轴承的疲劳...

改进经验模态分解在动平衡信号提取中的应用

作者: 秦鹏 蔡萍 来源:仪器仪表学报 日期: 2022-12-12 人气:6029
改进经验模态分解在动平衡信号提取中的应用
在变频结构干扰和强噪声背景下,传统方法从原始振动信号中提取动平衡信号的精度不高。本文采用经验模态分解可以根据实时振动信号的局部特征时间尺度,将其自适应分解为有限多个由高频到低频排列的、正交的本征模态函数;同时利用自回归预测模型延拓信号端点,以消除分解过程的边界效应对低频动平衡信号的影响;最后,根据功率谱密度可以快速、有效地判断出代表基频信号的本征模态函数。实验结果证明,该方法可以高精度提取动平衡信号,在相同测量条件下,能够获得较高的一次不平衡量降低率和较好的重复性能。

基于改进VMD的液压系统故障特征提取

作者: 丰少伟 柴凯 朱石坚 杨庆超 楼京俊 来源:海军工程大学学报 日期: 2021-06-17 人气:52
为从液压系统振动信号中提取有效特征进行故障诊断,针对随机噪声、端点效应和虚假分量会影响变分模态分解(VMD)的分解精度问题,提出了一种改进VMD的故障特征提取方法。首先,针对随机噪声会导致分解误差增大现象,提出了基于奇异值差分谱降噪预处理,该方法能抑制噪声对分解结果的干扰;然后,针对端点效应会导致VMD处理信号两端产生明显的飞翼现象,提出了基于支持向量回归机的端点延拓,该方法具有较高的拟合精度;最后,针对虚假本征模态函数(IMF)分量会导致VMD处理出现能量泄漏现象,提出了IMF能量熵增量的虚假分量剔除,该方法的真假分量具有区分性。仿真信号和实测液压信号分析表明:改进VMD能有效改善传统VMD方法在特征提取上的三个不足,可准确提取液压故障信号的主要特征频率,实现液压系统故障的精确诊断。

基于自适应局部迭代滤波和能量算子解调的滚动轴承故障特征提取

为了提高滚动轴承的故障特征提取可靠性,该文提出了一种基于自适应局部迭代滤波(Adaptive local iterative filtering,ALIF)和能量算子解调的滚动轴承故障特征提取的方法。该方法首先利用ALIF将轴承的故障振动信号分解为若干个本征模态函数(Intrinsic mode function,IMF)分量,然后对包含故障信息最多的分量进行能量算子解调,得到分量的包络谱来提取轴承的故障特征。仿真结果表明ALIF能够准确获取IMF分量,解决经验模式分解(Empirical mode decomposition,EMD)带来的模式混叠问题,结合能量算子解调方法能更好地凸显故障信号的包络谱特征,有效地提取轴承故障特征频率。
    共1页/4条