多几何要素影响下液压阀件特性的混合神经网络预测模型
液压阀件系统是一个具有多几何要素影响的多系统特性复杂系统,建立液压阀件特性预测模型,以系统多几何要素作为输入,实现系统特性的预测,将对实际生产具有重要的意义。在深入分析反向传播(Back propagation,BP)神经网络与径向基函数(Radial basis function,RBF)神经网络的基础上,结合两类神经网络的特点,提出基于BP神经网络与RBF神经网络的混合神经网络预测模型。利用生产实际中实测的某具体液压阀件特性值及影响该特性的各几何要素值作为预测模型的数据来源,对所提出的混合神经网络进行训练,并进行仿真。实例计算表明混合神经网络预测模型可提高单项神经网络预测模型的预测精度,预测平均相对误差为0.0461。可见,所提出的混合神经网络预测模型能够很好地满足工程实践中液压阀件特性预测要求。
基于ARIMA和SVR的滚动轴承状态预测方法研究
滚动轴承作为多种机械设备的关键零件,其运行状态的好坏往往影响着整机设备的运行状况,因此高精度的滚动轴承状态预测对整机设备的运行状态有着重要的意义。针对滚动轴承单一预测模型精度较差的问题,构建一种基于时间序列ARIMA和支持向量回归机SVR理论的组合预测模型。首先针对单一模型进行预测,应用误差平方和倒数法得到两种预测模型的权重结果,最终将该组合模型的预测结果分别与单一预测模型作比对分析。结果表明:该组合预测模型的预测误差均小于单一模型,具有较高的可靠性。
多几何要素影响下液压阀件特性的混合神经网络预测模型
液压阀件系统是一个具有多几何要素影响的多系统特性复杂系统,建立液压阀件特性预测模型,以系统多几何要素作为输入,实现系统特性的预测,将对实际生产具有重要的意义。在深入分析反向传播(Back propagation,BP)神经网络与径向基函数(Radial basis function,RBF)神经网络的基础上,结合两类神经网络的特点,提出基于BP神经网络与RBF神经网络的混合神经网络预测模型。利用生产实际中实测的某具体液压阀件特性值及影响该特性的各几何要素值作为预测模型的数据来源,对所提出的混合神经网络进行训练,并进行仿真。实例计算表明混合神经网络预测模型可提高单项神经网络预测模型的预测精度,预测平均相对误差为0.0461。可见,所提出的混合神经网络预测模型能够很好地满足工程实践中液压阀件特性预测要求。
-
共1页/3条