截止阀启闭时流动特征的动态数值模拟
针对XYZ-125G型稀油站所广泛使用的J41H截止阀工作状态下流场特点,采用计算流体动力学(CFD)的方法对截止阀的流动情况进行动态数值计算。详细模拟出截止阀阀盘开启和闭合过程中阀体内部的速度、压力分布和压头损失。CFD模拟阀体压头损失值和利用理论计算的阀体压头损失值吻合较好,阀门的开启或闭合,水泵的突然停车等原因,使流速发生突然变化,同时产生压强的大幅度波动现象。通过CFD技术在模拟截止阀启闭过程中动态流动状况的应用,能够确定流体通过阀道时所产生的漩涡、水锤和死水区等水流状况,为液压冲击的预测与防范及阀道结构优化提供理论依据。
风屏障对桥梁及列车的气动特性影响研究
为研究平层公铁两用桥的风屏障在不同透风率和高度下对高速列车及桥梁气动力特性的影响,对列车-桥梁-风屏障三维模型进行了全结构网格划分,并与风洞试验结果进行比较,验证了数值模拟方法的可靠性。研究不同透风率和风屏障高度下高速列车及桥梁气动力系数的变化规律。通过数据包络法(DEA方法)对三分力系数进行了效率评估,给出了风屏障参数最佳取值。研究结果表明高透风率的风屏障虽高度增加,但防风效果仍不佳;风屏障可有效降低桥上列车的气动力系数,同时增大了桥梁的阻力系数;采用风屏障时,应综合考虑车桥整体的气动性能;针对本研究的平层公铁两用桥梁,当风屏障高度为3.5 m,透风率为20%时,车桥系统整体的气动性能最佳,效率最高。
基于试验设计与代理模型的中央开槽箱梁气动外形优化方法
为克服大跨度桥梁主梁断面气动选型过程中几何参数多、潜在组合多、试验工作量大的难题,提出基于“均匀试验设计+Kriging代理模型”优化策略的桥梁断面气动外形优化方法。以某大跨桥梁中央开槽箱梁颤振性能优化为例,采用该方法进行气动外形优化。基于计算流体动力学(CFD)数值模拟,首先通过“均匀试验设计”合理选取CFD分析工况,再利用“Kriging代理模型”以尽可能少的工况建立主梁几何参数-颤振临界风速关系模型,基于该模型分析不同几何参数对桥梁颤振性能影响规律,获取最优主梁断面。结果表明“均匀试验设计+Kriging代理模型”优化策略能够在保证模型精度的前提下显著减少计算工况,工作量仅为遍历性试验的0.68%;CFD数值模拟、试验设计与代理模型策略的结合可以快速评估不同几何参数对抗风性能的影响规律,在背景桥梁主梁高度和行车道宽...
近距离非对称双塔连体结构气动噪声CFD数值模拟研究
为研究超高层建筑气动噪声的分布特征,以晟通梅溪湖国际总部中心二期项目为例,结合标准k-ε湍流模型和声类比法开展了超高层建筑气动噪声的数值模拟。基于Fluent软件平台,通过自主开发的用户自定义函数(UDF)程序生成满足大气边界层特性的入口湍流风场,并将其赋值给计算域入口边界,开展流场数值模拟获取声源信息,再基于FW-H方程求解声场。研究表明,气动噪声与流场的脉动特性密切相关,结构侧面的总声压级最大,迎风侧次之,背风侧最小。气流流经结构折角位置时与结构间的相互作用是风致气动噪声的重要来源。在建筑设计阶段需要重视气动噪声并采取相应措施降低气动噪声的不利影响。相关研究结果可为超高层建筑风致气动噪声的CFD模拟提供重要参考。
新型升阻混合型垂直轴风力机气动特性研究
考虑S型与H型垂直轴风力机的特点,设计了一种新型升阻混合型垂直轴风力机,采用CFD法计算其启动与气动性能。结果表明,原始H型垂直轴风力机数值结果与试验值在各工况下吻合良好;新型升阻混合型垂直轴风力机不同方位角下的启动力矩均大于原始H型风力机,最小及最大值分别提升232%和83.3%;S型风轮输出功率随叶片重叠比增加而减小,完全重叠时输出功率基本为0;新型升阻混合型垂直轴风力机最大风能利用率为0.298,具有更复杂的流场特性。
平流层飞艇气动阻力的参数分析
为了研究环境参数及外形布局对平流层飞艇气动阻力的影响,在验证CFD数值模拟方法的基础上,从气动阻力包括压差阻力与摩擦阻力的角度探讨了风速、动力粘度系数、空气密度、Re数、长细比及尾翼对飞艇气动阻力的影响规律及机理。结果表明:气动阻力系数随风速与空气密度的增加而减小,随动力粘度系数的增加而增加;气动阻力系数随Re数减小的趋势,取决于摩擦阻力系数随Re数的减小趋势;随长细比的增加,摩擦阻力系数呈现增加趋势,但气动阻力系数呈现先减小后增加的趋势;尾翼对气动阻力系数的影响主要体现在压差阻力系数的改变。
球面配流盘三角槽过流面积对柱塞泵出口流量脉动影响的研究
以球面配流盘三角槽为研究对象,采用流场数值模拟方法,得到了三角槽宽度角和深度角对其过流面积的影响规律。在考虑配流副端面间隙的基础上,对使用不同三角槽的柱塞泵进行数值模拟,分析了泵的出口流量和柱塞腔内压力随缸体转角的变化特征。结果表明:球面配流盘三角槽的过流面积随深度角的增长率大于宽度角的,且过流面积越大,在三角槽处发生的油液倒灌量越多,从而增大了柱塞腔内压力提升的速率,缩短倒灌的时长;如过流面积越小,倒灌量越少,不仅使柱塞腔内压力上升缓慢,倒灌现象持续,还使柱塞排油过程延后,导致流量的峰值提高,加大了脉动幅度。