对称结构DBD等离子体激励器改善气膜冷却效率的数值模拟研究
基于等离子体简化唯象模型,采用大涡模拟方法研究了激励强度和电极间距对于对称结构DBD等离子体激励器气膜冷却效率的影响。结果表明:由于等离子体激励的下拉诱导作用和展向动量注入效应,发卡涡的上抛过程受到抑制,壁面附近的展向速度增大,并且诱导产生的反肾形涡对削弱了肾形涡对的强度和尺寸,阻碍了高温主流向冷却射流底部的流动,冷却射流的附壁性和展向扩张能力均增强,气膜冷却效率提高。此外,气膜冷却效率随激励强度的增大而增大,随电极间距的增大而减小。
冷却孔附近三维流动的结构
本文简略综述了横流中射流研究的局部结构,并且采用数值模拟的方法,研究在给定横向流速和不同吹风比(0.5、1.0和1.5)条件下,圆形垂直射流孔附近区域三维定常流动的流场,以揭示局部流场的复杂涡系结构和形成机理。
基于分离涡模拟的平板气膜涡系结构与流动损失数值研究
气膜冷却在保护高温部件的同时,主流与冷气干涉会形成复杂的涡系结构并造成掺混损失,研究二者之间的作用机理对指导气冷涡轮优化设计具有重要意义。本文采用DES(Detached-Eddy Simulation)方法对平板圆柱气膜孔的流场进行非定常数值模拟,分析了涡系演变规律以及掺混损失。结果表明随着吹风比的提高,冷气射流与主流的流动掺混过程表现为两种不同的模式,低吹风比时下游冷气主要受顺时针方向的迎风涡控制,高吹风比时逆时针方向的迎风涡和顺时针方向的背风涡同时控制下游冷气运动;频谱分析显示,流场扰动存在着明显的倍频关系,基频信号由脱落涡产生,频率大小与吹风比呈线性关系;损失分析表明,流场损失主要由冷气与主流的温差换热导致,占总熵损失的90%以上。
考虑气膜冷却脉动特性的涡轮动叶凹槽状叶顶气动和冷却性能研究
为了深入研究压气机抽取的脉动冷气影响燃气涡轮动叶凹槽状叶顶的流动与冷却特性,采用数值求解三维非稳态雷诺时均N-S方程和标准k-ω湍流模型的方法,研究了考虑气膜冷却脉动特性的涡轮动叶凹槽状叶顶的气动和冷却性能。采用正弦函数描述动叶凹槽状叶顶中弧线等间距布置气膜冷却孔的冷气脉动特性,对比研究了3种脉动振幅和5种脉动频率的动叶凹槽状叶顶气膜冷却有效度和总压损失系数。研究结果表明在一个脉动周期内,不同瞬时冷气的穿透能力和附着能力差异显著。气膜冷却冷气吹风比小幅值脉动时,脉动频率的提高改变了叶顶气膜冷却有效度变化曲线的相位,但对整体的冷却效果基本没有影响;冷气吹风比大幅值脉动时,脉动频率的增大略微提高了叶顶冷却性能,并且当脉动频率增大至最大值2000 Hz时,受到延迟反馈效应的影响,脉动周期内气膜冷...
气动参数对气膜孔流量系数的影响
使用数值计算方法研究了压比、内流马赫数、外流马赫数、吹风比、速度比等气膜冷却设计中常见的气动参数对气膜孔流量系数的影响。基于数值计算结果,提出了一种气膜孔流量系数的计算关联式。与文献中试验数据的对比表明,该关联式精度较高,可以为涡轮叶片冷却设计提供参考。
扫掠冲击-气膜冷却结构的气动传热特性数值研究
为了揭示“扫掠冲击-气膜”冷却结构的换热机理,采用气热耦合方法和SST k-ω湍流模型,对比分析了吹风比为1,2,3,4和气膜孔角度为30°,45°,55°,65°等条件下,“直接冲击-气膜”组合方式和“扫掠冲击-气膜”组合方式在平板模型上的气动传热特性。结果表明,流体激振器的扫掠频率、冲击靶面上的Nu数随吹风比增大而增大,并且几乎不受气膜孔角度影响。两种组合方式的总压损失系数和综合冷却效率随吹风比增大而增大,并且随气膜孔角度的增大而略微减小。尽管在使用相同冷气流量时“扫掠冲击-气膜”组合方式的冷气进口静压较高,但是其具有冲击靶面上Nu数分布均匀、综合冷却效率更高且分布面积更大的优势。
适用高超声速飞行环境的超声速气膜冷却光学窗口研究进展
高超声速条件下,气动光学效应的存在严重影响红外成像制导精度,已经成为新一代高超声速精确打击武器研制面临的关键技术难题之一。为解决这一技术瓶颈,需要开展适用高超声速飞行环境的超声速气膜冷却光学窗口研究,解决高超声速飞行条件下光学窗口防热和成像难题,突破现有红外成像制导武器的速度和温度限制,可为实现高超声速条件下武器对空、对地和对海高精度打击提供支撑。
高压涡轮动叶吸力面气膜冷却特性研究
为了研究某航空发动机高压涡轮动叶吸力面的气膜冷却特性,通过数值模拟的方法,采用SST k-ω湍流模型,分析了高压涡轮动叶在静止和旋转条件下,吸力面气膜冷却效率的影响规律。结果表明:在静止条件下,相同主流湍流度时吹风比对吸力面气膜冷却效率影响显著,冷却效率随着吹风比的增大而减小;在小吹风比下,气膜冷却效率随着主流湍流度的增大而减小;在大吹风比下,气膜冷却效率随着主流湍流度的增大而增大。在相同湍流度和转速下,随着吹风比的增大,气膜向高半径偏转程度减小;在相同湍流度和吹风比下,随着转速的增大,气膜沿流向上的气膜覆盖面积减弱。优化结构的扇形气膜孔对叶片吸力面具有更好的冷却效果。
动叶片尾缘不同气膜冷却方式对涡轮气动性能的影响
计算模型选用某型燃气轮机透平的第一列动叶,通过中心差分格式对叶栅流场进行数值模拟。文中通过改变冷气喷射角度计算了多种不同的尾缘气膜冷却方案,分析了这些方案下,能量损失系数、冷却效率以及温度场的分布情况和其对透平的气动性能的影响。结果表明:在尾缘区域喷射冷气进行冷却时,冷气喷射方向与法线成80°时,由于冷气喷射方向接近主流流向,能量损失系数最低,但尾缘区域冷却效果不明显,摩擦因数较高,压力变化明显。在与法线成70°和75°喷射冷气时,能量损失系数也比较低,冷却效果比较明显,总体看来,与法线成70°喷射冷气时的气动效果和冷却效果都比较好。
动叶片综合气膜冷却方式对涡轮气动性能的影响
文中计算模型选用某型燃气轮机涡轮的第一列动叶,通过中心差分格式对叶栅流场进行数值模拟。通过在前缘、尾缘、吸力面、压力面以及压力面上端壁附近开设冷气孔,在下端壁前缘附近开设冷气槽等方式对叶片进行综合冷却,分析了能量损失系数、冷却效率以及温度场的分布情况和其对透平的气动性能的影响。结果表明:喷射冷气后,能量损失系数与无冷气喷射时能量损失系数沿叶高分布趋势相同,端区损失略大,中部损失较低,喷射冷气后,顶部能量损失系数略高于根部。组合冷却条件下,叶片中部吸力面和压力面冷却效率都较高,压力面冷却效率基本不变;叶片根部压力面前缘冷却效率较低,吸力面则较高;在顶部情况与根部正好相反。吸力面喷射冷气时,在冷气孔列附近冷气可以很好地贴合叶片吸力面表面,对叶片吸力面进行冷却,压力面一侧在冷气孔列之后...