用自制总积分散射仪评估SiC基底表面改性效果
根据总积分散射理论自制了半球式总积分散射仪,建立了系统规范的测试方法,并应用其对工程中SiC基底表面改性的效果进行了相关检测和评估。改性后RB-SiC和S-SiC基底的散射系数分别降低到2.86%和1.53%,已接近于抛光良好的微晶玻璃的水平(1.38%)。该散射仪的优点是操作简单、方便快捷、不接触样品、对表面无损害。通过对测试数据的分析可知,从散射特性角度对SiC基底表面改性效果进行评估是合理有效的。把相关测试结果与分光光度计的测试结果对比,测量偏差在1.1%左右,说明该总积分散射仪的测试结果准确可靠。
RB-SiC基底反射镜表面改性工艺的改进
为了满足空间用大口径、复杂轻量化结构RB-SiC基底反射镜对高性能表面质量的需求,针对RB-SiC基底的特性,提出了改进表面改性工艺的方法。采用高能量考夫曼离子源辅助,预先对基底进行碳化和加镀C缓冲层,并制备Si改性涂层的方法对RB-SiC基底进行了表面改性。测试结果表明:与单纯霍尔离子源辅助方法相比,该工艺方法制备的Si改性涂层生长得更加致密、均匀,抛光特性良好;改性抛光后表面粗糙度(rms)降低到0.635 nm,达到了S-SiC基底的水平;改性后RB-SiC基底的反射率明显提高,达到了抛光良好的微晶玻璃的水平。结果表明,该工艺方法是提高RB-SiC基底表面改性效果的一种合理有效的方法。
应用SiC反射镜表面改性技术提高TMC光学系统信噪比
为了消除SiC反射镜的固有缺陷,提高反射式光学系统的信噪比,使用SiC表面改性技术对同轴三反射(TMC)光学系统的SiC反射镜进行了处理。首先,应用等离子体辅助沉积(PIAD)技术沉积了一层Si改性层,接着对改性层进行精密抛光,然后在反射镜表面镀制Ag膜和增强膜,最后获得了表面改性对TMC光学系统信噪比的影响。Wyko轮廓仪测试表明,SiC反射镜的粗糙度Ra由10.42nm降低到了0.95nm;镀制高反射膜后,主镜、次镜、三镜及折叠镜在0.5~0.8μm可见光波段的反射率>98%。计算结果表明,应用了表面改性技术后TMC反射式光学系统的信噪比提高了5%以上,说明SiC表面改性技术是一种提高TMC光学系统信噪比的有效方法。
2mSiC反射镜拱形轻量化结构设计
针对口径为2060mm的地基大口径望远镜主反射镜,选用SiC材料和新型拱形轻量化结构进行了详细的轻量化参数设计,并对支撑环半径进行了优化。对于Whiffie tree 18点支撑和27点支撑形式,从静力学(重力作用)和热力学两方面对比分析了两种轻量化结构的镜面变形,结合SiC反射镜的加工工艺,最终确定18点支撑的轻量化结构为首选方案。同时,就SiC反射镜对稳态温度差导致的热变形较敏感的问题,提出可通过设计与镜体热变形相匹配的支撑结构来满足镜面变形的要求。
空间用SiC反射镜表面改性的性能和可靠性评估
根据空间应用项目需求,采用等离子辅助电子束蒸发方法对RB—SiC基底进行了表面改性,并对表面改性的性能和可靠性进行了相关评估.经测试,改性后RB—SiC基底表面粗糙度(rms)降低到0.632nm;散射系数降低到2.81%,500~1000nm范围的平均反射率提高到97.05%,已经接近于抛光良好的微晶玻璃的水平;改性涂层温度稳定性高,与基底结合牢固;加工后,面形精度达到0.1192(PV)和0.0142(rms),λ=632.8nm.评估结果表明,这种SiC基底表面改性的工艺是可靠的,其光学性能满足空间高质量光学系统的要求,适宜空间环境应用.
超轻量化SiC反射镜有限元分析及应用
对超轻量化SiC反射镜进行了有限元分析。设计了超轻量化SiC反射镜的镜体结构。采用MSC.Nastran分析软件对其进行了有限元工程分析。分析结果表明,可满足SiC反射镜面形精度的要求和轻量化的要求。介绍了一种SiC反射镜无镜框支撑结构。
大口径SiC反射镜组件研制技术
目前大口径SiC反射镜组件的研制是当前轻小型化相机研制中亟待解决的关键技术之一。针对该类反射镜的研制特点,本文以某轻型相机大口径SiC反射镜组件的工程研制为例,从方案设计、力学样机设计与分析及地面试验三方面,系统地阐述了大口径SiC反射镜组件进行合理、高效、高可靠性设计的主要研制技术路线。有关试验结果表明,SiC反射镜组件一阶频率保持在340Hz左右,与有限元分析结果相差约8.5%;振动试验前后反射镜面形RMS相差为0.009λ,该结构满足使用要求。该反射镜组件研制技术路线完全适用于其它大口径反射镜组件的工程研制,并可有效提高结构的稳定性,缩短研制周期。
基于超声振动磨削与抛光技术的SiC反射镜加工工艺研究
针对航天用SiC反射镜在加工过程中的低加工效率、表面质量差等难题,在半精磨阶段采用超声振动磨削技术对其进行加工试验以研究其去除机理及存在的缺陷。为进一步解决超声振动磨削SiC反射镜存在的缺陷。在精加工阶段对其进行了抛光试验。通过采用正交试验的方法对影响SiC表面粗糙度的各工艺参数进行抛光试验设计及分析得到抛光压力、抛光盘转速、抛光液磨粒粒度及抛光时间对表面粗糙度的影响规律及其最优参数组合。研究结果表明在抛光压力40kPa,抛光盘转速400r/min。抛光液磨粒粒度0.5μm,抛光时间2h的最佳工艺参数下可获得表面粗糙度为21nm的加工表面。
-
共1页/8条