基于深度迁移混合模型的刀具磨损状态监测方法
为提高刀具磨损的监测精度和效率,针对加工过程中刀具磨损状态监测出现的数据不均衡问题,提出一种基于深度迁移混合模型的刀具磨损状态监测方法。通过混合类平衡正则化、数据增强与批量归一化技术对经过图像编码的数据集进行图像预处理,再利用ResNet32残差神经网络从图像中自适应地提取相关重要特征,然后采用ResNet32残差神经网络作为分类器进行两阶段训练,采用标签感知平滑优化损失函数,通过参数迁移获得最优分类模型。结果表明所提方法有效改善了刀具磨损监测数据不均衡的问题,与目前的基于深度学习的刀具磨损监测方法相比,在准确率和计算效率方面均有较大提高。
基于轻量化模型结合DA与TL的轴承故障诊断
为了在计算量有限的平台上实现对轴承故障的准确和实时诊断,提出一种基于轻量化Mobilenet V3模型结合数据增强和迁移学习技术的轴承故障诊断方法。将一维振动信号通过连续小波变换转换为二维时频图,以更好地揭示信号的时频特性;采用数据增强技术对时频图进行图像增强,并将它作为网络模型的输入,进一步提高模型的鲁棒性和泛化性能;最后,通过迁移学习调整网络模型,有效减少模型的训练迭代次数,提高诊断精度。采用所提方法在凯斯西储大学数据集上进行了实验验证。实验结果表明所提方法在源域下达到了100%的诊断精度,诊断时间为41.3 ms,模型大小为16.3 MB,相比同类型中最优的网络模型,其精度提高了0.437%;在不同信噪比的噪声下,平均诊断精度仍达到97.406%;在跨域实验中,平均准确率达到了98.188%,比同水平中最优的模型提高了1.563%。综合考虑诊断精度...
基于数据增强与领域泛化的轴承跨域故障诊断
在实际故障诊断任务中,待诊断任务往往不可预知,现有的一些迁移学习方法在构建迁移模型时,大多只集中在单一数据来源的学习上,并且极大依赖于目标域数据的样本数量等。针对此问题,提出一种基于数据增强与领域泛化的故障诊断方法。提出一种将一维振动信号转换为二维特征指标灰度图的数据预处理方法;利用带有梯度惩罚的深度条件Wasserstein对抗网络对多源域数据进行数据增强;最后,采取多域对抗学习策略,缩小多域间的分布差异,从而实现各域的特征域自适应。在轴承数据集上对所提方法的有效性和可靠性进行了充分的实验验证。实验结果表明所提方法具有较高的稳定性和泛化性能,并且诊断精度优于其他方法。
改进Yolo V3算法在工件缺陷检测中的应用
为快速、准确地检测工业生产中工件表面产生的缺陷,提出了一种基于Yolo V3的工件表面缺陷检测方法。该方法以DarkNet卷积模型作为特征提取网络,通过引入数据增强方法防止产生过拟合现象,并针对工件表面缺陷形状单一、缺陷尺寸普遍偏小的特点改进了Yolo V3网络的特征融合方式,减少了冗余候选框的数量,提升了算法性能。以环形工件作为检测对象搭建了实验平台。实验结果表明,所提方法能克服人工提取特征的局限性,检测精度和检测速度均满足实际生产要求。
基于迁移学习和微调的起重机类型识别策略
起重机具有诸多类型,不同类型的起重机具有不同的分析或保养方法,因此对起重机类型进行识别意义重大。针对深度卷积神经网络中存在的数据需求量大、训练时间长、计算成本高等问题,提出一种基于迁移学习和微调的起重机类型识别策略。通过搭建不包含分类层的预训练InceptionV3模型并连接自定义的分类层,利用迁移学习和微调技术,训练出适用于起重机类型识别任务的卷积神经网络。实验结果表明,相较于从头搭建并训练深度卷积神经网络,利用迁移学习和微调方法对预训练模型进行训练可得到较高的识别准确率,并且训练速度更快,训练时间显著缩短。验证集和测试集的识别准确率分别为98.24%和97.67%。
改进Mask RCNN的焊缝缺陷检测
焊接缺陷检测是焊接行业的一项重要工作,利用X射线焊缝缺陷图像进行缺陷检测是焊接无损检测的重要手段。为实现对缺陷的自动识别和定位,结合缺陷的具体特征提出了一种改进的Mask RCNN实例分割网络实现对图像进行缺陷检测和分割。该方法在原有网络的基础上通过采用变形卷积更好地提取不规则形状缺陷特征信息,引入空洞卷积加强高层特征的感受野,在局部图像中融合全局图像信息使局部图像获取上下文信息,利用迁移学习和数据增强降低对训练数据的需求,提升检测和分割精度。最终,通过对焊缝X射线数据集上进行实验,验证改进的Mask RCNN模型与原始Mask RCNN模型以及Faster RCNN模型等模型进行客观比较,并对实验结果进行可行性分析,提出的模型表现出更精确的检测精度和更好的性能。实验结果表明改进的Mask RCNN模型可以更好的适用于焊缝缺陷检测中。...
基于小样本数据驱动模型的硅片线切割质量预测
在单晶硅加工中,硅片多线切割质量检测耗时和检测成本高造成硅片质量检测难。因此,提出一种基于生成对抗网络(WGAN-GP)数据处理与自注意力残差网络(SeResNet)的硅片质量预测方法。分析多线切割的机制,确定影响硅片质量的工艺参数,建立数据样本,使用WGAN-GP对样本数据进行数据增强。在此基础上,建立基于SeResNet的硅片总体厚度偏差预测模型。以硅片的多线切割加工过程监控数据为模型验证数据,对构建的硅片总体厚度偏差预测模型进行验证。实验结果表明:该模型具有良好泛化性和高准确率,有效解决了小样本数据下的预测难题,实现了平均相对误差小于10%的硅片总体厚度偏差预测,所以基于数据驱动的硅片质量预测来代替硅片加工中的质量检测具有重要的现实意义。
基于改进VGG13的冲压件表面缺陷识别方法研究
针对现有冲压件制品缺陷检测方法准确率低的问题,分析深度学习的原理与方法,以VGG13网络为基准模型,通过在特征提取层之后增加CBAM模块进行改进,提出5种基于VGG13与CBAM注意力机制模块相结合的网络模型(VGG13-CBAM),将改进后的新模型与改进前原VGG13模型分别在武汉某制造车间采集的冲压件缺陷数据集上进行实验研究。将数据集以6∶2∶2划分为训练集、验证集、测试集,并使用数据增强进一步扩充训练集,增加模型泛化性能,对比数据增强前后效果的提升。实验结果表明:在改进后的VGG13-CBAM03网络与VGG13-CBAM04网络上效果明显提升,测试集正确率由79.65%分别提高到了81.55%和81.40%,在使用数据增强对训练集进行扩充后,测试集正确率分别达到84.25%和84.15%,有效提升了冲压件缺陷检测准确率。
-
共1页/8条