碧波液压网 欢迎你,游客。 登录 注册

基于改进SSD降噪的滚动轴承故障特征提取

作者: 王续鹏 孙虎儿 来源:机械传动 日期: 2024-06-29 人气:155
基于改进SSD降噪的滚动轴承故障特征提取
针对强背景噪声下滚动轴承早期微弱故障特征难以提取以及奇异谱分解方法分解的分量仍然包含噪声的问题,提出了一种奇异谱分解(Singular spectrum decomposition,SSD)和最大循环平稳盲解卷积(Maximum cyclostationarity blind deconvolution,CYCBD)相结合的滚动轴承微弱故障特征提取方法。由SSD方法将轴承振动信号自适应地分解为从高频到低频的奇异谱分量;根据分量峭度最大原则,筛选出最佳分量;再利用CYCBD对最佳分量后处理进一步降噪;进而对降噪后的信号进行Hilbert包络解调分析,得到故障特征频率。仿真和实验分析表明,该方法能有效提取滚动轴承早期微弱故障特征。

基于SK-MOMEDA的滚动轴承微弱故障特征提取

作者: 梁富旺 孙虎儿 刘柯欣 来源:机械传动 日期: 2024-06-26 人气:87
基于SK-MOMEDA的滚动轴承微弱故障特征提取
针对滚动轴承早期周期性瞬态冲击不明显及谱峭度在低信噪比情况下分析效果差的问题,提出多点优化最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和谱峭度相结合的轴承微弱故障特征提取方法。首先,采用MOMEDA作为前置滤波器对含有强噪声的微弱故障冲击信号进行降噪,突显信号中的周期性冲击性成分;然后,通过谱峭度分析,以最佳中心频率和带宽对降噪的信号进行带通滤波;最后,对滤波后的信号进行Hilbert包络谱分析,便可以准确地获得轴承信号的故障特征频率。仿真信号和实验分析结果表明,该方法可有效增强振动信号的周期性瞬态冲击特征,提取出滚动轴承早期微弱故障特征。

基于TVF-EMD和TEO的滚动轴承微弱故障特征提取

作者: 刘柯欣 孙虎儿 梁富旺 来源:机械传动 日期: 2024-06-24 人气:76
基于TVF-EMD和TEO的滚动轴承微弱故障特征提取
针对旋转机械转子振动信号通常伴随着强噪声,难以提取其有效信息的问题,提出一种基于时变滤波经验模态分解(Time varying filtering based empirical mode decomposition,TVF-EMD)和Teager能量算子(Teager energy operator,TEO)相结合的故障特征提取方法。首先,用TVF-EMD方法自适应地分解轴承振动信号,以获得一组本征模态函数(Intrinsic mode functions,IMFs);然后,对分解结果进行峭度计算,并根据峭度最大准则选出峰度值最高的敏感分量;进而,利用Teager能量算子对选定的敏感分量进行解调处理,通过观察明显的周期性故障特征频率来实现轴承微弱故障特征提取。进行了仿真和实验,结果证明,该方法能有效实现轴承微弱故障的诊断。

基于CYCBD和包络谱的滚动轴承微弱故障特征提取

作者: 蔡小亮 来源:机械传动 日期: 2024-06-17 人气:188
基于CYCBD和包络谱的滚动轴承微弱故障特征提取
针对在强噪声的干扰下,滚动轴承微弱故障特征难以有效地提取的问题,提出一种基于最大2阶循环平稳盲解卷积(Maximum Second-order Cyclostationarity Blind Deconvolution,CYCBD)和包络谱相结合的微弱故障特征提取方法。首先,由故障特征频率设置合理的循环频率集,使用CY-CBD对含有强噪声的微弱故障冲击信号进行降噪处理,增强信号中的周期性冲击成分;然后,对降噪信号进行Hilbert包络谱分析来识别故障特征频率。通过仿真和实验,结果证明,该方法能有效地提取被强噪声淹没的微弱故障特征。

改进小波去噪-Teager算子的齿轮微弱故障提取方法

作者: 何巍 袁亮 章翔峰 来源:振动.测试与诊断 日期: 2020-12-10 人气:85
改进小波去噪-Teager算子的齿轮微弱故障提取方法
针对齿轮箱在强噪声背景下齿轮微弱故障振动信号的特征不易被提取的问题,提出将改进小波去噪和Teager能量算子相结合的微弱故障特征提取方法。采用改进小波阈值函数对振动信号进行去噪处理,与形态学滤波和传统小波阈值函数相比能够有效地提高信号的信噪比。对去噪后的信号进行集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)得到若干本征模式函数(intrinsic mode function,简称IMF),计算各IMF分量与原信号的相关系数并结合各IMF分量的频谱剔除虚假分量。对有效的IMF分量计算其Teager能量算子,并重构得到Teager能量谱,对重构信号进行时频分析并将其结果与原信号的希尔伯特黄变换(HilbertHuang transform,简称HHT)得到的边际谱进行对比。实验研究结果表明,本研究方法相比HHT能够对齿轮微弱故障特征进行更为有效地提取,验证了本研究方法在齿轮...

基于EEMD-增强因子自适应的液压泵微弱故障特征提取

作者: 王余奎 李洪儒 许葆华 来源:机床与液压 日期: 2019-01-18 人气:213
基于EEMD-增强因子自适应的液压泵微弱故障特征提取
针对斜盘式轴向柱塞泵微弱故障特征难以提取的问题,提出了一种基于EEMD-增强因子自适应的液压泵微弱故障特征提取方法。对故障信号EEMD分解得到一组IMFs,采用增强因子作为各IMF权值合成信号以突出故障特征并抑制不相关成分;对合成信号EEMD分解,用敏感因子筛选出最能够表征故障信息的IMFs分量重构信号;对重构信号做Hil-bert变换求得包络谱,分析包络谱诊断出具体故障。仿真信号和液压泵实测信号的分析结果均很好地验证了该方法的有效性和优越性。
    共1页/6条