超高速摄影中三面体铝合金转镜的空间结构强度数值分析
给出了3维弹性力学空间问题基本方程和有限元结构强度分析原理,分析了三面体铝合金转镜空间结构强度的力学特征,建立了有限元模型,分析了其在轴孔与轴的3种配合关系下的应力分布。结果表明轴孔严重削弱了镜体强度,而配合方式对转镜强度基本无影响。提出了减小转镜内部应力的无轴孔三面体铝合金转镜结构,在该结构下转镜强度提高了1.9倍,极限转速为原结构的1.7倍,适合于分幅式摄影系统。
超高速摄影中铍转镜静力学与动力学性能分析
基于弹性力学空间问题基本方程、线性振动系统运动方程及有限元法,提出转镜力学特性的数值分析方法.运用该方法得出转镜镜面变形量、内部应力分布和振动模态参量的定量数值:在边缘线速度600m/s下,三面体铍转镜的最大变形量为约0.3346μm;最大应力0.204GPa,位于轴孔附近并与镜面距离最短处;两个在互相垂直平面内的一阶弯曲振动模态发生在3.4×10^5r/min附近,一阶扭振点位于5.13×10^5r/min附近,两个二阶弯曲振动点位于6.6×10^5r/min附近.结果表明,如制造无缺陷,由体力产生的静载荷不足以破坏镜体。对转镜产生较大破坏作用的是共振导致的疲劳破坏。
超高速摄影中弹性支撑转镜的模态分析
提出了超高速摄影仪中弹性支撑转镜模态分析方法,利用有限元法对三面体铝合金转镜刚性支撑和弹性支撑情况下的一、二阶模态进行模拟,结果表明:电驱动转镜在转速工作范围内只有2个临界点,分别位于2.5×10^5~2.6×10^5r/min和2.6×10^5~2.7×10^5r/min处,并且均为一阶弯曲振动,一阶模态振动发生在垂直平面内,二阶发生在水平平面内。将模拟结果与实测值进行了比较,发现假设转镜为弹性支撑与实测值吻合得较好。
超高速摄影机转镜的高精度速度测量研究
为了精确获取分幅摄影机的拍摄频率和条纹摄影机的扫描速度,必须精确测量转镜在拍摄期间的速度。提出一种基于数字信号处理器(DSP)与现场可编程门阵列(FPGA)相结合的高精度数字测量方法。DSP与FPGA采用高速串行外设接口(SPI)通信,DSP根据转镜转速的变化,自动对FPGA预置适当的时间闸门,FPGA计数缓冲后将测速数据发送给DSP处理,再经DSP串行口发送给计算机进行实时显示。FPGA的逻辑单元采用32位而且预置时间闸门可变,有效防止了数据的溢出,提高了转速的范围和精度;高速DSP提高了数据处理的速度,保证了实时性。系统仿真结果和实际工程使用情况表明此设计是可行的,测速精度可达0.0001%,测速范围为3~3×108r/min。
-
共1页/4条