制动工况下液力偶合器流场湍流模型分析与验证
合理选择湍流模型是获取准确和可靠数值模拟结果的关键。该文采用3种湍流模型(标准k-ε模型、分离涡模型、大涡模拟模型)仿真制动工况下方形腔液力偶合器流场,提取流速场和涡量场。基于粒子图像测速(particle image velocimetry,PIV)技术测量液力偶合器制动工况下流场,将数值模拟结果与PIV试验结果进行对比,以PIV试验测量结果作为评价基准,分析采用3种湍流模型计算流场结果的差异性,完成湍流模型的适用性分析。结果表明,标准k-ε模型仿真结果与PIV试验结果误差较大;采用大涡模拟模型模拟主流区域流场结构分布更加真实,仿真结果能够较好地解释主流区域多尺度涡旋运动规律和能量耗散机理;采用分离涡模型能够更准确地捕捉近壁面和角涡区高梯度流场结构分布。研究结果可为液力偶合器流场精确计算与性能预测提供参考。
涡旋压缩机的齿端流动阻力对最佳压缩比的影响
本文分析了涡旋压缩机齿端流动阻力的影响。排出端的流动阻力引起过压缩损失,但在操作压力高或转速提高时,却减少了不足压缩损失,因此使最佳压缩比变得高于内部压缩比。
基于动网格的蝶阀启闭过程的数值模拟研究
通过对中线蝶阀启闭过程中的流场进行二维动态数值模拟计算,得到了不同开度下阀后流体涡旋的演化规律。结果表明:随着开度的减小,流体经过蝶阀后,在蝶阀下游形成了一对旋向相反的对称涡,进而发展成非对称涡,最终演变成为多个非对称涡结构。同时,流体经过蝶阀后在蝶板下游边缘发生空化,当开度在14°左右时,气含率达到最大值0.79。空化促进了局部小尺度涡的产生,小尺度涡的发展和消亡加剧了蝶板运行过程中的振动,进而产生噪声。
往复压缩机吸气阀通道内流场数值模拟研究
往复压缩机的效率首先取决于气阀,气体的非稳态流动是引起阀片的非正常运动(颤振、关闭延时)原因,也是气体流动损失的主要原因。利用标准k-ε模型对吸气阀口形状及进出口通流面积之比进行了流场数值模拟,结果表明,随着吸气阀口的倾斜角度增大,气阀通道出口两侧的涡旋区域越大,造成流体的压力损失也就越大,另外还研究发现吸气阀的进出口通流面积之比值越小,流体的压力损失越小。最后通过试验验证了仿真的正确性。
液压破碎锤内锥阀中流道流场的数值分析
通过对液压破碎锤内锥阀内流道流场进行数值计算和模拟,探讨了不同情况下液压锥阀内流场包括流道速度场、压力场、流线和涡量线等的分布情况,分析了产生涡旋的位置和强度,找出了造成能耗的主要原因。结果表明,通过对锥阀阀座的优化设计,减少了流线的疏密程度和涡旋的大小,降低了能量损失,负压区也随之改变,减少了噪声,提高了能量利用率。
液压系统中产生噪声的原因分析
由于液压系统中出现噪声是不可避免的,有时使系统不能正常工作,对液压系统产生噪声主要原因即机械噪声和介质噪声进行了分析,并提出了一些具体的解决方法以降低或消除噪声.
-
共1页/6条