极限学习机在航空轴承故障诊断中的应用研究
基于实验平台,采集滚动轴承正常、内环故障、外环故障和滚珠故障四种工况的振动信号,利用时域分析法提取故障特征量。分析隐含层神经元数量、隐含层激活函数和样本比例对极限学习机网络诊断效果的影响,同时从网络对样本比例的适应性、算法的稳定性、仿真耗时和抗噪能力四方面比较BP、SVM和RBF网络。结果表明针对轴承故障诊断,极限学习机在神经元数量较少时采用Sigmoid()函数、神经元数量较多时采用Hardlim()函数,其诊断效果较佳;极限学习机相比BP、SVM和RBF网络,能够更好的适应样本比例的变化,且算法的稳定性和准确性均为最优;极限学习机仿真计算时间相对较短、抗噪能力较强。
基于遗传算法与SOM网络的轴承故障诊断方法
轴承作为旋转机械的核心部件,开展其有关故障诊断方面的研究,有利于对旋转机械运行状态进行监测。针对旋转机械轴承故障的微弱信号容易淹没在其它部件的振动信号中,采用特征提取法,从滚动轴承正常、内环故障、外环故障和滚动体故障四种工况的振动信号中提取时频域统计特征参数;并引入遗传算法消除时频域统计特征间的耦合性与共线性,提取9个时频域最优特征参数作为SOM网络的输入。研究结果表明不同故障类型下,激活的SOM神经元不呈现明显性的差异性;根据文中神经元激活统计规则,表明SOM具有一定的故障辨识性,且对规则进行调整能够提升SOM网络的诊断效果。
遗传算法优化的SVM在航空发动机磨损故障诊断中的应用
研究遗传算法(GA)优化的支持向量机(SVM)在航空发动机磨损故障诊断中的运用。介绍基于GA优化SVM算法的实现过程,对算法中关键参数进行分析,并用改进的GA对SVM中的惩罚参数和核参数进行优化。采用GA优化的SVM对某型号航空发动机的油液磨粒数据进行诊断,并从诊断精度、计算时间、抗噪能力三方面比较GA优化的SVM、BP神经网络和RBF神经网络的诊断精度。结果表明:GA优化的SVM能够有效地诊断航空发动机磨损故障;GA优化的SVM的诊断精度明显高于RBF和BP神经网络,且在有噪声的情况下,其诊断准确度依旧高于RBF和BP神经网络,但由于GA-SVM的结构和训练方法其训练时间较长。
-
共1页/3条