碧波液压网 欢迎你,游客。 登录 注册

基于EEMD与ELM的单向阀故障诊断

作者: 张庆宇 范玉刚 来源:陕西理工大学学报(自然科学版) 日期: 2022-08-16 人气:150
基于EEMD与ELM的单向阀故障诊断
提出了一种基于总体平均经验模态分解和极限学习机的故障诊断方法,该方法利用EEMD将单向阀振动信号分解成若干个不同尺度的本征模函数(IMF),从IMF分量中提取近似熵、能量熵、峭度和均方根4个特征构成特征向量集,用于建立基于极限学习机算法的故障诊断模型。实验结果表明,该方法可以监测高压隔膜泵运行状态,成功诊断出单向阀运行时产生的故障。

自适应随机共振和DEMD的单向阀早期故障诊断

作者: 牟竹青 冯早 黄国勇 范玉刚 来源:机械科学与技术 日期: 2021-06-10 人气:173
自适应随机共振和DEMD的单向阀早期故障诊断
针对高压隔膜泵单向阀的早期故障振动信号信噪比(SNR)低,故障特征提取困难的问题,本文提出一种自适应随机共振和微分经验模态分解(DEMD)的早期故障诊断方法。首先对原信号进行预处理,设置压缩比进行变尺度处理;然后将SNR作为自适应度函数,利用粒子群(PSO)算法优化随机共振(SR)系统参数,将优化后参数及处理后的信号输入SR系统中;最后对系统输出的信号进行DEMD算法分解,对各分量进行频谱分析,选取含特征频率的分量合成进行包络分析,以提取故障特征信息。经仿真分析与工程实验表明,该方法能够较好地提取出单向阀的早期故障特征信息。

基于ITD-AR模型和SVDD的轴承故障诊断方法研究

作者: 王之宏 范玉刚 黄国勇 来源:云南大学学报:自然科学版 日期: 2021-05-31 人气:149
基于ITD-AR模型和SVDD的轴承故障诊断方法研究
针对滚动轴承在强背景噪声干扰下振动信号故障特征难以提取,以及实际运行中因故障样本缺乏而影响故障诊断准确性的问题,提出了基于固有时间尺度分解(Intrinsic Time Scale Decomposition,ITD)的AR模型振动信号特征提取,与支持向量数据域描述(Support Vector Data Description,SVDD)相结合的轴承故障诊断方法.首先用ITD将振动信号分解成一系列的固有旋转(Proper Rotation,PR)分量,然后对每一个PR分量建立AR模型,提取模型参数和残差方差构造特征向量,用以建立轴承正常运行的SVDD模型,并以振动信号特征向量偏离SVDD模型的程度来判断轴承的运行状态.将该方法应用于滚动轴承的故障诊断,实验证明了所提方法的有效性.

基于DEMD的高压隔膜泵单向阀早期故障诊断

作者: 牟竹青 黄国勇 吴建德 范玉刚 来源:振动.测试与诊断 日期: 2021-04-25 人气:105
基于DEMD的高压隔膜泵单向阀早期故障诊断
针对高压隔膜泵单向阀的早期故障特征提取困难的问题,提出基于微分经验模态分解(differential empirical mode decomposition,简称DEMD)的高压隔膜泵单向阀早期故障诊断方法。首先,对振动信号进行微分运算,提高高频成分的振幅比,使微弱高频成分在后续分解中更易提取;其次,对得到的新信号进行经验模态分解(empirical mode decomposition,简称EMD),并将分解后的本征模函数(intrinsic mode function,简称IMF)分量信号进行积分还原;最后,计算分量信号与原振动信号的Kullback-Leibler散度(Kullback-Leibler divergence,简称K-L散度)值,选取K-L散度值较小的分量信号进行重构,并利用Hilbert边际谱对重构信号进行瞬时频谱分析,以提取故障振动信号的特征。仿真与工程实验分析表明,该方法能够较好地提取出单向阀早期故障特征信息。

ITD-多尺度熵和ELM的风电轴承健康状态识别

作者: 张朝林 范玉刚 冯早 来源:机械科学与技术 日期: 2021-04-14 人气:144
ITD-多尺度熵和ELM的风电轴承健康状态识别
对风力发电机机组的运行状况进行实时监测,并识别其健康状态,是保证机组正常运行的关键,为此提出一种固有时间尺度分解(Intrinsic time-scale decomposition,ITD)-多尺度熵(Multiscale entropy,MSE)的振动信号分析方法,对振动信号进行预处理,提取重构信号时域特征,并结合极限学习机(Extreme learning machine,ELM)对风电轴承健康状态进行识别。首先采用ITD方法对风电轴承的振动信号进行分解,得到一系列固有旋转分量,并计算其多尺度熵值,以多尺度熵值大小为依据,选取固有旋转分量并进行信号重构。计算重构信号的均方根值、峭度值、峰值因子与峰峰值,并将其作为特征指标值,建立ELM识别模型,识别风电轴承的健康状态。风电轴承试验结果表明,本文模型可以准确识别风电轴承健康状态。
    共1页/5条