模拟退火改进的神经网络算法及其在振动分析中的应用
将传统的反向传播算法(BP算法)神经网络模型结合模拟退火算法及最佳保留原则,提出一种改进的神经网络模型,并将改进之后的网络模型应用于对颗粒碰撞阻尼的分析。训练仿真结果显示:改进后的算法与传统的BP算法、LM算法相比具有更高的可靠性,更快的收敛速度,仿真结果与实验结果更接近。用训练好的模拟退火神经网络模型对颗粒碰撞阻尼的激振频率、填充率和振幅有效值等参数进行了仿真,得到了系统在低频阶段颗粒粒度、填充率和振幅有效值之间的关系。
-
共1页/1条