变运行参数的磁性液体密封中磁液温度特性分析
磁性液体工作温度高于汽化温度时不仅会导致磁性液体的表面活性物质受损,还会引起磁性液体汽化。为探讨磁性液体密封中磁液的温度特性,基于数值计算和试验验证相结合的方法,研究磁性液体旋转密封的转速、轴径和温度的关系,并分析磁性液体工作温度高于汽化温度时的相变过程。结果表明:磁性液体旋转密封的温度最大值出现在与轴表面相接触的位置,最小值出现在与极齿底部相接触的位置;随转速和轴径的增大,磁液温度最大值均升高,当两工况轴径与转速乘积相等时,磁性液体的温升值相同;当磁性液体温度高于其汽化温度时,与外界相通靠近轴表面附近的磁性液体最先发生相变,相变面积呈现抛物线形状向内扩散,且相同工作温度下,磁性液体的相变体积分数随轴径增大而降低。
新型变齿磁流体密封结构设计及性能研究
为提高磁流体密封耐压能力,在传统磁流体密封结构基础上提出一种新型变齿磁流体密封结构。基于磁流体密封耐压理论,利用ANSYS Maxwell软件对新型变齿结构密封间隙内磁感应强度大小分布进行研究,采用控制变量法分析变齿宽系数、变齿高系数2个因素单独及共同对磁流体密封耐压性能的影响。结果表明:随着变齿宽系数的增加磁流体密封耐压能力先增加后减小;随着变齿高系数的增加磁流体密封耐压能力逐渐减小;变齿宽系数及变齿高系数两因素共同作用时,在变齿高系数及变齿宽系数均为1.1的情况下磁感应强度差最大,密封耐压性能最好。
大轴径磁流体真空动密封装置的优化设计
设计了一种大轴径两级真空磁流体密封装置,并在可变转速和径向间隙下测试其密封性能。利用ANSYS磁场有限元分析软件对不同极靴结构、径向间隙下的磁场强度进行数值计算,确定出具有最佳聚磁效果的极靴结构和密封间隙。基于计算结果设计了试验装置,采用饱和磁化强度分别为30.66 kA/m和41.75 kA/m的两种磁流体进行试验,转速可以在0~6000 r/min范围内调节,径向间隙取0.3 mm、0.5 mm和0.7 mm三种。结果表明,楔形极靴聚磁效果更好,可以大幅提高间隙内的磁感应强度;高饱和磁化强度的磁流体密封性能下降发生在低速区而低饱和磁化强度的磁流体密封性能下降发生在高速区;间隙对大轴径密封性能影响较大,尤其在高速工况下,0.7 mm间隙的密封结构密封时间仅为45 min左右。
磁性液体在液体动密封的应用研究进展
磁性液体密封是一种新型密封方式,具有零泄漏、无污染、寿命长和可靠性高等优点,广泛应用于干式罗茨真空泵、反应釜、船舶尾轴和旋转式血泵等密封领域。目前,磁性液体密封技术在气体、真空条件下的应用已趋于成熟,但在液体密封方面起步较晚,存在密封界面稳定较差、磁性液体乳化失效等一系列问题。因此,基于磁性液体在液体密封领域的研究及应用现状进行归纳总结,从而为磁性液体在液体密封领域发展提供理论参考。
磁性液体动静密封时界面形状仿真分析
对磁性液体动静密封时界面形状的研究是解决密封液体界面不稳定的关键。由于磁性液体密封装置材料的限制,利用试验的方法观察密封时的界面形状存在一定困难。基于数值计算和理论推导相结合的方式,对磁性液体动静密封时的界面形状进行研究。研究表明,静密封时,密封压力和密封间隙处磁感应强度分布是决定磁性液体界面形状的主要因素,当外界压力为理论密封压力最大值的50%时,界面形状呈现双曲线函数轮廓,有利于界面稳定;当外界压力为理论密封压力最大值的75%时,界面形状存在凸起,严重影响界面稳定性;当密封压差为理论密封压力最大值时,界面形状呈现S型,界面稳定性较好。动密封时,界面形状受转速、轴径、外界压力、磁感应强度分布共同影响,对动密封时界面形状推导了理论公式。
密封液体流动特性对磁液密封界面的影响
水轮机轴部应用磁性液体密封时,存在密封转速低、不稳定等现象,密封液体流场特性对密封失效有重大影响.基于数值计算的方法,对比了磁性液体动、静密封时密封液体的流场特性,并进行了实验验证.结果表明,密封压力对密封液体流场影响较小,轴转速对密封液体流场影响较大.该结论可为设计水轮机主轴的磁性液体密封装置提供理论指导.
大轴径离心压缩机磁流体密封传热特性研究
高温会降低磁流体饱和磁化强度,造成永磁铁退磁,影响磁流体密封装置的可靠性及稳定性。为探讨磁流体密封装置传热特性,以大轴径离心压缩机磁流体密封为研究对象,同时考虑磁流体摩擦热和轴承摩擦热对磁流体密封装置传热特性的影响,利用有限元数值计算与磁流体、轴承摩擦功耗理论分析相结合的方法,研究磁流体密封装置温度分布规律,分析齿宽、密封间隙和转速对永磁铁和磁流体最高稳态温度的影响,并确定相关工况所需冷却液质量流率。结果表明:由于轴径尺寸较大,表面线速度高,磁流体黏性摩擦热及轴承摩擦热对密封装置传热特性有显著影响,在无冷却工况下,密封装置最高温度超过磁流体和永磁铁的极限使用温度,需通过强制对流换热的方式进行降温处理;永磁铁及磁流体最高稳态温度随着齿宽增加而升高,随着密封间隙增加而减小;随着转速的...
离心压缩机磁流体密封设计及优化分析
针对现有密封方式难以解决离心压缩机旋转主轴线速度高所引发的密封困难问题,设计一种带有降温和降压功能的新型磁流体密封装置,基于磁流体运动方程建立考虑离心力影响的磁流体旋转动密封耐压计算公式,利用有限元数值分析方法研究该密封装置密封间隙内磁感应强度分布规律,分析各结构参数对密封性能的影响,运用正交试验和响应曲面优化方法对关键结构参数进行优化设计。结果表明:当转轴线速度较高时,离心力对密封性能有显著影响;密封压力值随着永磁铁厚度和永磁铁宽度的增加,先增加后趋于平稳,随着密封间隙的增加而降低,随着齿宽、齿高和槽宽增加,先增加后减小,各参数对密封性能的影响程度由大到小依次为密封间隙、齿宽、槽宽、永磁铁宽度、齿高、永磁铁厚度;优化后磁流体密封的结构参数为密封间隙0.1 mm、极齿宽度1.274 mm、齿高1.8...
柱塞泵用磁流体密封设计及优化
针对传统密封方式应用于往复密封存在磨损和泄漏的问题,以立式柱塞泵为研究对象,设计一种带有斯特密封的新型磁流体密封装置。利用有限元数值分析软件获得磁流体密封件间隙内磁感应强度分布,计算其理论耐压值,分析密封间隙、齿宽、齿高、槽宽等关键参数对密封压力值的影响,并运用响应曲面优化方法对其进行优化设计。结果表明:初设密封装置理论耐压值为0.483 MPa;密封压力值与密封间隙成反比,密封压力值随着齿宽、齿高、槽宽的增大先增大后减小。优化后各结构参数分别为密封间隙0.2 mm,齿宽0.627 mm,齿高1.01 mm,槽宽1.84 mm时,理论密封压力值为0.529 MPa,相比优化前提升了9.5%,且远高于实际应用密封压力值。
高性能磁流变液及其在阻尼器上的应用
磁流变液(Magneto Rheological Fluid,MRF)是近半个世纪前出现并发展至今的一种新型智能材料,通常由微米级磁性颗粒、基载液、添加剂三部分组成,未施加磁场时呈现出液体的自由流动状态,施加磁场时可在毫秒级时间内转换为具有类固态相的结构。目前众多磁流变液的流变特性、分散稳定性等较差,直接影响磁流变装置的应用效果。总结了磁流变液各组成成分对其流变特性、分散稳定性的影响,并讨论了磁流变液在阻尼器上的应用,从而为优化磁流变液的性能及其在阻尼方面的应用提供指导。