实测车轮六分力激励的车架疲劳寿命分析
车架疲劳寿命分析多以实测振动信号为动力学模型的输入激励。由于振动信号不能全面地反映出路面对整车的多维激励作用,导致基于动力学模型仿真预测的车架疲劳寿命精度和可信性偏低。而车轮六分力传感器可同时采集路面作用于轮心的多维力,复现路面-轮胎-整车的复杂耦合关系。为分析两种激励方法对疲劳寿命预测结果的影响,建立某自卸车整车刚柔耦合动力学模型,作为车架边界载荷的提取载体。然后基于车架有限元模型,通过惯性释放法获取应力分布,对比分析车轮六分力和轮心振动激励下车架的疲劳寿命情况。结果表明,采用轮心六分力载荷加载的半分析方法,可以更为准确地提取车架边界载荷,提高车架疲劳寿命预测的精度和可信性,为商用车辆结构更为准确的疲劳寿命预测提供借鉴。
基于自抗扰控制的分布式铰接车辆转向控制
铰接车辆通过前后车体间的相对转动实现转向行驶,这种特殊的转向形式导致其转向稳定性差,转向运动控制精度要求高。针对此问题,以某四轮分布式驱动井下支架搬运铰接车为原型,构建包括车身模型、轮胎模型和单阀控双非对称缸液压转向系统在内的分布式铰接车辆11自由度非线性动力学模型,并设计基于自抗扰控制器的液压转向控制系统,用以提升铰接车辆的转向稳定性。为验证此方法的有效性,建立MATLAB/Simulink仿真模型,进行初始车速为2.5 m/s的转向分析,并在同种工况下,加入外界干扰力矩,以PID控制器为对照组,对比分析两种液压转向系统控制器的抗扰动性能。仿真结果表明:基于ADRC控制的液压转向系统的转向角度误差在0.017 rad以内,且转向角度跟踪速度快,相对于PID控制器具有更好的抗扰动性能,有效提高了铰接车辆的转向稳定性。
-
共1页/2条