小样本下基于孪生神经网络的柱塞泵故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.47 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对目前基于深度神经网络的柱塞泵故障诊断方法在小样本条件下精度低、模型欠拟合问题,提出一种小样本条件下基于孪生神经网络的柱塞泵故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同健康状态下的壳体振动信号;使用由卷积层和池化层组成孪生子网络自适应地从原始振动信号中提取低维特征,使用欧式距离判定输入样本对的特征相似度;通过相似度对比的方法扩大训练样本数量并训练孪生神经网络模型;最后,对测试样本进行健康状态识别。实验结果表明:与传统深度神经相比,所提方法在小样本情况下具有更高的准确率。同时,多通道数据融合实验表明:所提方法能够从不同通道的信号中学习到有关故障信息,多通道数据融合可以进一步提高诊断准确率。相关论文
- 2020-08-27高速动车组制动系统用中继阀性能仿真研究
- 2020-08-21CRH2型动车组中继阀流体特性仿真研究
- 2025-01-03基于Fluent的连续油管冲砂喷头性能仿真
- 2020-12-02汽车EBD性能检验台仿真研究
- 2021-03-12基于Modelica语言的汽车性能仿真分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。