钻机回转液压系统仿真与健康评估
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.61 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对钻机实际故障数据获取较难和性能退化的非线性等问题,提出一种基于RBF神经网络的钻机回转液压系统健康状态评估方法。使用AMEsim软件搭建回转液压系统仿真模型,模拟了液压泵内泄露和液压马达内泄露,采集了样本数据并提取特征量,通过主成分分析法(PCA)对特征量进行降维处理,使用K均值算法(K⁃means)和粒子群优化算法(PSO)优化RBF神经网络参数,通过训练建立RBF神经网络健康评估模型,输入PCA处理后的数据,评估模型自动输出评估结果,实现了钻机回转液压系统健康状态的智能评估。结果表明,该方法具有较高准确性和可靠性,可用于钻机回转液压系统的健康评估,并为进一步开展钻机液压系统智能故障诊断和健康评估奠定了研究基础。相关论文
- 2019-08-20GK1.5N液压驱动式密炼机液压系统研究
- 2020-09-04自然工质R290在家用空调器中的应用研究
- 2021-09-28浅析数值仿真技术在液压支架方面的应用研究与展望
- 2020-12-03ZF3200/16/24B放顶煤液压支架优化设计
- 2020-01-07新型全液压驱动混炼成型装备的研制
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。