基于扩展核熵负载矩阵的发酵过程故障监测
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.34 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
为有效降低多阶段发酵过程硬分类缺陷而导致的误报和漏报率,本文提出了一种基于扩展核熵负载矩阵的阶段划分策略.首先,将发酵过程的三维训练数据按批次方向展开成二维数据矩阵,对每个时间片矩阵进行核熵成分分析(kernel entropy component analysis,KECA)得到其主元和负载矩阵,根据所得主元个数实现操作阶段的第1步划分;之后将时间片矩阵添加到核熵负载矩阵当中得到扩展核熵负载矩阵,计算各扩展负载矩阵间的相似度,并用模糊C–均值方法对其进行第二次阶段划分.通过增加对体现生产过程改变的时间指标的考虑,有效克服了硬化分的不足,避免了跳变点错分的情况.最终将整个生产操作过程划分为不同的稳定阶段和过渡阶段,并在划分的每一阶段中分别建立KECA监测模型;最后利用青霉素发酵仿真平台和大肠杆菌生产白介素–2数据进行实验.实验结果表明该方法不但可以准确地对生产过程进行阶段划分、降低误报率,而且可以使生产过程故障监测的时间大大提前.相关论文
- 2021-01-29发动机缸体曲轴孔加工工艺研究
- 2021-05-17四刀位数控车床精准对刀装置设计
- 2021-01-18基于UG的摇摆臂零件制造工艺设计
- 2021-07-15基于高压锂电的电动叉车行走动力控制系统研究
- 2021-02-01一种偏心轴加工工艺方法
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。