改进CHSMM的滚动轴承剩余寿命预测方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.41 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
22
简介
针对连续隐半马尔科夫模型(Continuous hidden semi-Markov model,CHSMM)对滚动轴承剩余寿命预测精度低问题,提出一种基于改进CHSMM的滚动轴承剩余寿命方法。提取滚动轴承振动信号的时域、时频域特征向量,采用主成分分析(Principle component analysis,PCA)算法对特征向量进行降维;针对状态驻留时间概率密度函数不符合实际而引起的剩余寿命预测精度低问题,将高斯混合概率密度函数引入到CHSMM算法中,建立退化状态识别模型和剩余寿命预测模型。最后,将轴承全生命周期数据输入到模型中,得到轴承的退化状态和剩余寿命。试验结果表明,采用所提方法能准确的对轴承剩余寿命进行预测,与CHSMM算法相比,退化状态识别的正确率提高了12%,剩余寿命预测的正确率提高了23%。相关论文
- 2025-01-16根切齿轮齿根过渡曲线图解分析与计算
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。